二叉搜索树

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
//插入和删除函数必须都得以返回指针的形式实现
//对于插入,看其最后的NULL时插入就能看出
//对于删除,本质删除的是只有一个儿子和没有儿子的节点,想其删除没有儿子的节点的情况
//若不返回指针,此节点的父亲就有个指针指向非法区了
struct TreeNode{
	int Element;
	struct TreeNode* Left;
	struct TreeNode* Right;
};
struct TreeNode* Init(){//初始化
	return NULL;
}
void PreTraversal(struct TreeNode* BinSearchTree)//前序遍历  
{  
    if(BinSearchTree!=NULL){  
         printf("%d ",BinSearchTree->Element);  
         PreTraversal(BinSearchTree->Left);  
         PreTraversal(BinSearchTree->Right);  
    }
    return;  
}  
struct TreeNode* Find(int data,struct TreeNode* BinSearchTree)//查找
{
	if(BinSearchTree==NULL)
		return NULL;
	else if(BinSearchTree->Left!=NULL&&data<BinSearchTree->Element)
		return BinSearchTree->Left;
	else if(BinSearchTree->Right!=NULL&&data>BinSearchTree->Element)
		return BinSearchTree->Right;
	else 
		return BinSearchTree;
}
struct TreeNode* FindMax(struct TreeNode* BinSearchTree)//查找最大值所在的节点
{
	if(BinSearchTree==NULL)
		return NULL;
	else if(BinSearchTree->Right!=NULL)
		return FindMax(BinSearchTree->Right);
	else
		return BinSearchTree;
}
struct TreeNode* FindMin(struct TreeNode* BinSearchTree)//查找最小值所在的节点
{
	if(BinSearchTree==NULL)
		return NULL;
	else if(BinSearchTree->Left!=NULL)
		return FindMin(BinSearchTree->Left);
	else
		return BinSearchTree;
}
struct TreeNode* Insert(int data,struct TreeNode* BinSearchTree)//插入
{
	if(BinSearchTree==NULL){
		BinSearchTree=(struct TreeNode*)malloc(sizeof(struct TreeNode));
		BinSearchTree->Element=data;
		BinSearchTree->Left=NULL;
		BinSearchTree->Right=NULL;
		return BinSearchTree;
	}
	else if(data<BinSearchTree->Element)
		BinSearchTree->Left=Insert(data,BinSearchTree->Left);
	else if(data>BinSearchTree->Element)
		BinSearchTree->Right=Insert(data,BinSearchTree->Right);
	else
		printf("ERROR\n");
	return BinSearchTree;
}
struct TreeNode* Delete(int data,struct TreeNode* BinSearchTree)//删除
{
	if(BinSearchTree==NULL)
		return NULL;
	else if(data>BinSearchTree->Element)
		BinSearchTree->Right=Delete(data,BinSearchTree->Right);
	else if(data<BinSearchTree->Element)
		BinSearchTree->Left=Delete(data,BinSearchTree->Left);
	else if(BinSearchTree->Left&&BinSearchTree->Right){//删除有两个孩子的节点,可找左树最大与右树最小代替其,本质删除没有儿子的节点
		struct TreeNode* Temp=FindMin(BinSearchTree->Right);
		BinSearchTree->Element=Temp->Element;
		BinSearchTree->Right=Delete(Temp->Element,BinSearchTree->Right);
	}
	else{//删除有一个/零个孩子的节点
		struct TreeNode* Temp;
		Temp=BinSearchTree;
		if(BinSearchTree->Left!=NULL)
			BinSearchTree=BinSearchTree->Left;
		else//此处包含了右儿子也为空的情况,即零个孩子
			BinSearchTree=BinSearchTree->Right;
		free(Temp);
	}
	return BinSearchTree;

}
int main(){
	struct TreeNode* BinSearchTree;
    //初始化
    BinSearchTree=Init();
    //插入
    BinSearchTree=Insert(4,BinSearchTree);
    BinSearchTree=Insert(3,BinSearchTree);
    BinSearchTree=Insert(6,BinSearchTree);
    BinSearchTree=Insert(5,BinSearchTree);
    BinSearchTree=Insert(7,BinSearchTree);
    BinSearchTree=Insert(2,BinSearchTree);
    //遍历一遍,便于检验代码
    PreTraversal(BinSearchTree);
    putchar('\n');
    //删除有零个孩子的2节点
    BinSearchTree=Delete(2,BinSearchTree);
    PreTraversal(BinSearchTree);
    putchar('\n');
    //重新插入2
    BinSearchTree=Insert(2,BinSearchTree);
    //删除有一个孩子的3节点
    Delete(3,BinSearchTree);
    PreTraversal(BinSearchTree);
    putchar('\n');
    //删除有两个孩子的6节点
    Delete(6,BinSearchTree);
    PreTraversal(BinSearchTree);
    putchar('\n');
    
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值