Causal Generative Domain Adaptation Networks[Daily Reading]

Causal Generative Domain Adaptation Networks [Daily Reading]

causal graph

causal graph
话不多说,先上图,这篇文章的因果图和我之前读过的,都有所不同。As the variable that need to be predicted, Y is on the cause position instead of effect position. In the following we will see how this makes sense.

Framework

In this paper they propose a Generative Domain Adaptation Network (G-DAN) with specific latent variables θ \theta θ to capture changes in P X ∣ Y P_{X|Y} PXY. X X Xdenotes features and Y Y Y the class label. P X ∣ Y P_{X|Y} PXY is implicitly represents by functional model X = g ( Y , E , θ ) X=g(Y,E,\theta) X=g(Y,E,θ). In this function, latent variables θ \theta θ may change across domains. E, the noise

Identifiability theory to support θ \theta θ

Causality: Testing Identifiability
(The above blog explains how to identify joint distribution under confounding in detail.)
In the 3.1 section , the authors use identifiability to make sure whether the estimated θ ^ \widehat {\theta} θ can capture all the distribution changes.

Model Learning

θ \theta θ is estimated by

CG-DAN(Causal Generative Domain Adaptation Networks)

CG-DAN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值