1021. Deepest Root

本文深入探讨了深度学习和数据挖掘领域的关键概念、技术应用与最新进展,包括机器学习模型、算法优化、数据预处理、特征工程、模型评估等方面的内容。通过实例分析,展示了深度学习在图像识别、自然语言处理、推荐系统等领域的强大能力,同时讨论了数据挖掘在市场分析、客户行为预测、异常检测等场景中的实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1021. Deepest Root (25)

时间限制
1500 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.

Output Specification:

For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.

Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:

Error: 2 components

考查:并查集、树的深度。

#include<stdio.h>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;

vector<int> v[10002];
queue<int> que;
int Tree[10002];
int ans[10002];
bool mark[10002];
int tail, n;

int find_root(int x)
{
	if(Tree[x] == -1)
		return x;
	else
	{
		int tmp = find_root(Tree[x]);
		Tree[x] = tmp;
		return tmp;
	}
}

int find_height(int x)
{
	mark[x] = true;
	int height_tmp = 0;
	que.push(x);
	que.push(-1);
	
	while(!que.empty())
	{
		if(que.front() == -1)
		{
			height_tmp ++;
			que.pop();
			
			if(que.empty())
				break;
			else
				que.push(-1);
		}
		int front = que.front();
		tail = front;
		
		for(int i = 0; i < v[front].size(); i ++)
		{
			if(!mark[v[front][i]])
				que.push(v[front][i]);
			mark[v[front][i]] = true;
		}
		que.pop();
	}
	for(int i = 1; i <= n; i ++)
		mark[i] = false;
	return height_tmp;
}

int main()
{
	freopen("F://Temp/input.txt", "r", stdin);
	scanf("%d", &n);
	for(int i = 1; i <= n; i ++)
	{
		Tree[i] = -1;
		ans[i] = 0;
		mark[i] = false;
	}
	
	if(!que.empty())
		que.pop();
		
	int a, b;
	for(int i = 0; i < n-1; i ++)
	{
		scanf("%d%d", &a, &b);
		v[a].push_back(b);
		v[b].push_back(a);
		a = find_root(a);
		b = find_root(b);
		if(a != b)
			Tree[a] = b;
	}
	int count = 0;
	for(int i = 1; i <= n; i ++)
		if(Tree[i] == -1)
			count ++;
	if(count > 1)
	{
		printf("Error: %d components\n", count);
		return 0;
	}
	else
	{
		int height_max, head;
		for(int i = 1; i <= n; i ++)
		{
			if(v[i].size() == 1)
			{
				head = i;
				break;
			}
		}
		
		height_max = find_height(head);
		while(height_max != find_height(tail))
		{
			head = tail;
			height_max = find_height(head);
		}
		int j = 0;
		for(int i = 1; i <= n; i ++)
			if(find_height(i) == height_max)
				ans[j ++] = i;
	//	printf("height_max = %d\n", height_max);
	//	printf("j = %d\n", j);
		sort(ans, ans + j);
		for(int i = 0; i < j; i ++)
			printf("%d\n", ans[i]);
	}
	return 0;
}


# -*- coding: utf-8 -*- '''请在Begin-End之间补充代码, 完成BinaryTree类''' class BinaryTree: # 创建左右子树为空的根结点 def __init__(self, rootObj): self.key = rootObj # 成员key保存根结点数据项 self.leftChild = None # 成员leftChild初始化为空 self.rightChild = None # 成员rightChild初始化为空 # 把newNode插入到根的左子树 def insertLeft(self, newNode): if self.leftChild is None: self.leftChild = BinaryTree(newNode) # 左子树指向由newNode所生成的BinaryTree else: t = BinaryTree(newNode) # 创建一个BinaryTree类型的新结点t t.leftChild = self.leftChild # 新结点的左子树指向原来根的左子树 self.leftChild = t # 根结点的左子树指向结点t # 把newNode插入到根的右子树 def insertRight(self, newNode): if self.rightChild is None: # 右子树指向由newNode所生成的BinaryTree # ********** Begin ********** # self.rightChild = BinaryTree(newNode) # ********** End ********** # else: t = BinaryTree(newNode) t.rightChild = self.rightChild self.rightChild = t # ********** End ********** # # 取得右子树,返回值是一个BinaryTree类型的对象 def getRightChild(self): # ********** Begin ********** # return self.rightChild # ********** End ********** # # 取得左子树 def getLeftChild(self): # ********** Begin ********** # return self.leftChild # ********** End ********** # # 设置根结点的值 def setRootVal(self, obj): # 将根结点的值赋值为obj # ********** Begin ********** # self.key = obj # ********** End ********** # # 取得根结点的值 def getRootVal(self): # ********** Begin ********** # return self.key # ********** End ********** # # 主程序 input_str = input() nodes = input_str.split(',') # 创建根节点 root = BinaryTree(nodes[0]) # 插入左子树和右子树 if len(nodes) > 1: root.insertLeft(nodes[1]) if len(nodes) > 2: root.insertRight(nodes[2]) # 前三行输出:对创建的二叉树按编号顺序输出结点 print(root.getRootVal()) left_child = root.getLeftChild
最新发布
03-18
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值