hdu 5078 Osu!(鞍山现场赛)

本文深入探讨了Osu!游戏的难度计算算法,通过分析游戏内点位与时间戳,计算玩家跳跃操作的难度,并提供了一个高效实现此功能的代码实例。该文不仅适用于游戏开发者,也对算法爱好者具有一定的参考价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Osu!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 20    Accepted Submission(s): 15
Special Judge


Problem Description
Osu! is a very popular music game. Basically, it is a game about clicking. Some points will appear on the screen at some time, and you have to click them at a correct time.


Now, you want to write an algorithm to estimate how diffecult a game is.

To simplify the things, in a game consisting of N points, point i will occur at time ti at place (xi, yi), and you should click it exactly at ti at (xi, yi). That means you should move your cursor from point i to point i+1. This movement is called a jump, and the difficulty of a jump is just the distance between point i and point i+1 divided by the time between ti and ti+1. And the difficulty of a game is simply the difficulty of the most difficult jump in the game.

Now, given a description of a game, please calculate its difficulty.
 

Input
The first line contains an integer T (T ≤ 10), denoting the number of the test cases.

For each test case, the first line contains an integer N (2 ≤ N ≤ 1000) denoting the number of the points in the game.  Then N lines follow, the i-th line consisting of 3 space-separated integers, ti(0 ≤ ti < ti+1 ≤ 106), xi, and yi (0 ≤ xi, yi ≤ 106) as mentioned above.
 

Output
For each test case, output the answer in one line.

Your answer will be considered correct if and only if its absolute or relative error is less than 1e-9.
 

Sample Input
2 5 2 1 9 3 7 2 5 9 0 6 6 3 7 6 0 10 11 35 67 23 2 29 29 58 22 30 67 69 36 56 93 62 42 11 67 73 29 68 19 21 72 37 84 82 24 98
 

Sample Output
9.2195444573 54.5893762558
Hint
In memory of the best osu! player ever Cookiezi.
 


求最大难度,难度为相邻两点的距离除以时间差。

代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <math.h>
using namespace std;
double a[10000];
double b[10000];
int ti[10000];
double dis(int i,int j)
{
    return sqrt((a[i]-a[j])*(a[i]-a[j])+(b[i]-b[j])*(b[i]-b[j]));
}
int main()
{
    int t,n;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        double ans=0;

        for(int i=0;i<n;i++)
        {
            scanf("%d%lf%lf",&ti[i],&a[i],&b[i]);
        }
        for(int i=1;i<n;i++)
        {
            ans=max(ans,(dis(i-1,i)/(ti[i]-ti[i-1])));
        }
        printf("%.10f\n",ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值