605B. Lazy Student(codeforces Round 335)

这篇博客讲述了学生Vladislav在编程考试中遇到一个问题,需要根据给出的最小生成树信息重建原来的图。题目提供了图的顶点数、边数以及每条边的权重和是否属于最小生成树。Vladislav需要构造一个符合条件的图,使得给出的最小生成树信息正确。如果无法构造,则输出-1。解决方案需要保证图是连通的,没有环和重复边,并且包含了一个最小生成树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Lazy Student
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Student Vladislav came to his programming exam completely unprepared as usual. He got a question about some strange algorithm on a graph — something that will definitely never be useful in real life. He asked a girl sitting next to him to lend him some cheat papers for this questions and found there the following definition:

The minimum spanning tree T of graph G is such a tree that it contains all the vertices of the original graph G, and the sum of the weights of its edges is the minimum possible among all such trees.

Vladislav drew a graph with n vertices and m edges containing no loops and multiple edges. He found one of its minimum spanning trees and then wrote for each edge its weight and whether it is included in the found tree or not. Unfortunately, the piece of paper where the graph was painted is gone and the teacher is getting very angry and demands to see the original graph. Help Vladislav come up with a graph so that the information about the minimum spanning tree remains correct.

Input

The first line of the input contains two integers n and m () — the number of vertices and the number of edges in the graph.

Each of the next m lines describes an edge of the graph and consists of two integers aj and bj (1 ≤ aj ≤ 109, bj = {0, 1}). The first of these numbers is the weight of the edge and the second number is equal to 1 if this edge was included in the minimum spanning tree found by Vladislav, or 0 if it was not.

It is guaranteed that exactly n - 1 number {bj} are equal to one and exactly m - n + 1 of them are equal to zero.

Output

If Vladislav has made a mistake and such graph doesn't exist, print  - 1.

Otherwise print m lines. On the j-th line print a pair of vertices (uj, vj) (1 ≤ uj, vj ≤ n, uj ≠ vj), that should be connected by the j-th edge. The edges are numbered in the same order as in the input. The graph, determined by these edges, must be connected, contain no loops or multiple edges and its edges with bj = 1 must define the minimum spanning tree. In case there are multiple possible solutions, print any of them.

Sample test(s)
input
4 5
2 1
3 1
4 0
1 1
5 0
output
2 4
1 4
3 4
3 1
3 2
input
3 3
1 0
2 1
3 1
output
-1


题目大意:
    一张图,n个顶点m条边,只给出它们的权重和是否是最小生成树的边,恢复原来的顶点的连接关系。

解题思路:
    构造题,把最小生成树当成长度为n的链,且是从小到大排序的,于是后面的不是最小生成树的边的两点就只能在在当前这个这个顶点的前面。注意不要有重边。

代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=100000+100;
struct node
{
    int x,y,id,v,sign;
}a[maxn];
int cnt[maxn];
bool cmp1(node x1,node y1)
{
    if(x1.v==y1.v)
        return x1.sign>y1.sign;
    return x1.v<y1.v;
}
bool cmp2(node x1,node y1)
{
    return x1.id<y1.id;
}
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        for(int i=0; i<m; i++)
        {
            scanf("%d%d",&a[i].v,&a[i].sign);
            a[i].id=i;
        }
        sort(a,a+m,cmp1);
        int flag=1;
        if(a[0].sign==0)
        {
            printf("-1\n");
        }
        else
        {
            int now=2;//当前要处理的顶点
            int cur=3;//不是最小生成树添加到的顶点
            cnt[cur]=1;
            for(int i=0; i<m; i++)
            {
                if(a[i].sign)
                {
                    a[i].x=now;
                    a[i].y=now-1;
                    now++;
                    //cur=1;
                }
                else
                {
                    if(cur<=now-1)
                    {
                        a[i].x=cur;
                        a[i].y=cnt[cur];
                       // cout<<cur<<"     "<<cnt[cur]<<endl;
                        if(cnt[cur]>=cur-2)//cur与cur+1的边是给最小生成树的
                        {
                          cur++;
                          cnt[cur]=1;
                        }
                        else
                        {
                           cnt[cur]++;
                        }
                    }
                    else
                    {
                        flag=0;
                        break;
                    }
                }
            }
            if(flag)
            {
                sort(a,a+m,cmp2);
                for(int i=0; i<m; i++)
                {
                    printf("%d %d\n",a[i].x,a[i].y);
                }
            }
            else
                printf("-1\n");
        }

    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值