/*****************************************************************************
* Copyright (C) 2013 x265 project
*
* Authors: Steve Borho <steve@borho.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com
*****************************************************************************/
#include "common.h"
#include "threadpool.h"
#include "threading.h"
#include <new>
#if X86_64
#ifdef __GNUC__
#define SLEEPBITMAP_CTZ(id, x) id = (unsigned long)__builtin_ctzll(x)
#define SLEEPBITMAP_OR(ptr, mask) __sync_fetch_and_or(ptr, mask)
#define SLEEPBITMAP_AND(ptr, mask) __sync_fetch_and_and(ptr, mask)
#elif defined(_MSC_VER)
#define SLEEPBITMAP_CTZ(id, x) _BitScanForward64(&id, x)
#define SLEEPBITMAP_OR(ptr, mask) InterlockedOr64((volatile LONG64*)ptr, (LONG)mask)
#define SLEEPBITMAP_AND(ptr, mask) InterlockedAnd64((volatile LONG64*)ptr, (LONG)mask)
#endif // ifdef __GNUC__
#else
/* use 32-bit primitives defined in threading.h */
#define SLEEPBITMAP_CTZ CTZ
#define SLEEPBITMAP_OR ATOMIC_OR
#define SLEEPBITMAP_AND ATOMIC_AND
#endif
#if MACOS
#include <sys/param.h>
#include <sys/sysctl.h>
#endif
#if HAVE_LIBNUMA
#include <numa.h>
#endif
namespace x265 {
// x265 private namespace
class WorkerThread : public Thread
{
private:
ThreadPool& m_pool;
int m_id;
Event m_wakeEvent;
WorkerThread& operator =(const WorkerThread&);
public:
JobProvider* m_curJobProvider;
BondedTaskGroup* m_bondMaster;
WorkerThread(ThreadPool& pool, int id) : m_pool(pool), m_id(id) {}
virtual ~WorkerThread() {}
void threadMain();
void awaken() { m_wakeEvent.trigger(); }
};
/** 函数功能 :??在tryWakeOne中返回当前机器任意一个正在睡眠的核,tryBondPeers返回当前线程拥有核且正在睡眠的核
/* 调用范围 :??只在 JobProvider::tryWakeOne()和ThreadPool::tryBondPeers函数中被调用
* \参数 firstTryBitmap :??为Job的m_ownerBitmap (如4核机器:一般传入是-1~15的数据)或者直接指定为-1
* \参数 secondTryBitmap :只有0 和 -1 两个值能够传进来,tryBondPeers为0 tryWakeOne() 为-1(全为1,mask值)
* \返回 :??在tryWakeOne中返回当前机器任意一个正在睡眠的核,tryBondPeers返回当前线程拥有核且正在睡眠的核 * */
void WorkerThread::threadMain()
{
//此函数(有几个核,进入几次)
THREAD_NAME("Worker", m_id);
#if _WIN32
SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_BELOW_NORMAL);//设置线程优先级
#else
__attribute__((unused)) int val = nice(10);
#endif
m_pool.setCurrentThreadAffinity(); //设置线程间能够在不同的核运行,而不会同时占用同一个核
sleepbitmap_t idBit = (sleepbitmap_t)1 << m_id; //内核编号:如id(0,1,2,3) 对应(1,10,100,1000)
m_curJobProvider = m_pool.m_jpTable[0]; //初始化当前任务,选择第一个FrameEncoder[0]
m_bondMaster = NULL;
SLEEPBITMAP_OR(&m_curJobProvider->m_ownerBitmap, idBit);//更新当前job拥有的内核号
SLEEPBITMAP_OR(&m_pool.m_sleepBitmap, idBit); //更新sleepmap
m_wakeEvent.wait();
/* 等待触发,只有触发后才进行下面语句(虽然m_curJobProvide一开始对应的是FrameEncoder[0],但是lookachead会先触发)
用于标记当前是否触发,触发只在两个函数中会触发:tryWakeOne()和ThreadPool::tryBondPeers
**/
while (m_pool.m_isActive)
{
if (m_bondMaster)
{
m_bondMaster->processTasks(m_id); //完成相应任务PMODE、WeightAnalysis、PME、CostEstimateGroup、PreLookaheadGroup
m_bondMaster->m_exitedPeerCount.incr(); //完成一个任务加1
m_bondMaster = NULL; //当前任务被释放
}
do
{
/* do pending work for current job provider */
m_curJobProvider->findJob(m_id); // 运行子类 Lookachead:运行slicetypeDecide() ; Wpp: ???
/* if the current job provider still wants help, only switch to a
* higher priority provider (lower slice type). Else take the first
* available job provider with the highest priority */
int curPriority = (m_curJobProvider->m_helpWanted) ? m_curJobProvider->m_sliceType :
INVALID_SLICE_PRIORITY + 1;
int nextProvider = -1;
for (int i = 0; i < m_pool.m_numProviders; i++)
{
if (m_pool.m_jpTable[i]->m_helpWanted &&
m_pool.m_jpTable[i]->m_sliceType < curPriority)
{
nextProvider = i;
curPriority = m_pool.m_jpTable[i]->m_sliceType;
}
}
if (nextProvider != -1 && m_curJobProvider != m_pool.m_jpTable[nextProvider])
{
SLEEPBITMAP_AND(&m_curJobProvider->m_ownerBitmap, ~idBit);
m_curJobProvider = m_pool.m_jpTable[nextProvider];
SLEEPBITMAP_OR(&m_curJobProvider->m_ownerBitmap, idBit);
}
}
while (m_curJobProvider->m_helpWanted);
/* While the worker sleeps, a job-provider or bond-group may acquire this
* worker's sleep bitmap bit. Once acquired, that thread may modify
* m_bondMaster or m_curJobProvider, then waken the thread */
SLEEPBITMAP_OR(&m_pool.m_sleepBitmap, idBit);
m_wakeEvent.wait();
}
SLEEPBITMAP_OR(&m_pool.m_sleepBitmap, idBit);
}
/** 函数功能 :Lookahead::addPicture 中: 在获取帧数大于m_fullQueueSize才会进入 获得当前可用核,并触发线程,更新ownermap
FrameEncoder::compressFrame()中:
FrameEncoder::processRowEncoder中:??在tryWakeOne中返回当前机器任意一个正在睡眠的核,tryBondPeers返回当前线程拥有核且正在睡眠的核
/* 调用范围 :只在 Lookahead::addPicture和FrameEncoder::compressFrame()、FrameEncoder::processRowEncoder 函数中被调用
* \返回 :null * */
void JobProvider::tryWakeOne()
{
int id = m_pool->tryAcquireSleepingThread(m_ownerBitmap, ALL_POOL_THREADS);//找到一个当前正在sleep的核即可
if (id < 0)
{
m_helpWanted = true;//如果没有可用的核,置true并返回(需要核)
return;
}
WorkerThread& worker = m_pool->m_workers[id];//获取当前job
if (worker.m_curJobProvider != this) /* poaching */
{
sleepbitmap_t bit = (sleepbitmap_t)1 << id;//获取当前id占用的map,相应位置为1
SLEEPBITMAP_AND(&worker.m_curJobProvider->m_ownerBitmap, ~bit);//当前job不该拥有不属于自己的核,所以去除当前核
worker.m_curJobProvider = this;// 更新当前job指针
SLEEPBITMAP_OR(&worker.m_curJobProvider->m_ownerBitmap, bit);//真正的job获取当前的核更新m_ownerBitmap
}
worker.awaken();//触发当前work
}
/** 函数功能 :在tryWakeOne中返回当前机器任意一个正在睡眠的核,tryBondPeers返回当前线程拥有核且正在睡眠的核
/* 调用范围 :只在 JobProvider::tryWakeOne()和ThreadPool::tryBondPeers函数中被调用
* \参数 firstTryBitmap :为Job的m_ownerBitmap (如4核机器:一般传入是-1~15的数据)或者直接指定为-1
* \参数 secondTryBitmap :只有0 和 -1 两个值能够传进来,tryBondPeers为0 tryWakeOne() 为-1(全为1,mask值)
* \返回 :在tryWakeOne中返回当前机器任意一个正在睡眠的核,tryBondPeers返回当前线程拥有核且正在睡眠的核 * */
int ThreadPool::tryAcquireSleepingThread(sleepbitmap_t firstTryBitmap, sleepbitmap_t secondTryBitmap)
{
unsigned long id;
sleepbitmap_t masked = m_sleepBitmap & firstTryBitmap;//表示当前拥有并且sleep的核数
while (masked)
{
SLEEPBITMAP_CTZ(id, masked);//从低位开始返回第一个为1的位置
//如: mask=1 id = 0
// Mask= 2 10 id =1
// Mask = 4 100 id = 2
// 这里id刚好就是第几个核0,1,2,3
sleepbitmap_t bit = (sleepbitmap_t)1 << id;//获取当前位置的map,其它位置为0
//如当前:mask 为15 1111, id = 0,bit = 1<<id = 1 ~bit = 1110 m_sleepBitmap = 1111
//经过下列语句,m_sleepBitmap = 1110 SLEEPBITMAP_AND(&m_sleepBitmap, ~bit) 返回m_sleepBitmap原来的数据 更新m_sleepBitmap = (m_sleepBitmap& ~bit)
//If语句保证当前核是sleep状态 if的and语句是加锁状态的语句,防止当前m_sleepBitmap已经被修改
if (SLEEPBITMAP_AND(&m_sleepBitmap, ~bit) & bit)// m_sleepBitmap剔除当前位置为1的地方,改为0 可能进入else
return (int)id;//返回当前可用id
masked = m_sleepBitmap & firstTryBitmap;//更新masked(防止期间值已经被修改)
}
masked = m_sleepBitmap & secondTryBitmap;//在tryBondPeers中secondTryBitmap为0,mask一定为0,在tryWakeOne()中mask一定为15,全部为1
while (masked)//只会在tryWakeOne()中进入
{
SLEEPBITMAP_CTZ(id, masked);// 获取mask中第一个id
sleepbitmap_t bit = (sleepbitmap_t)1 << id;//获取当前位置的map,其它位置为0
if (SLEEPBITMAP_AND(&m_sleepBitmap, ~bit) & bit)//一般不进入else
return (int)id;
masked = m_sleepBitmap & secondTryBitmap;//更新masked状态,很少运行下面语句
}
return -1;
}
/** 函数功能 : 返回当前可用核数,并在threadmain中触发相应processtask
/* 调用范围 : 只在slicetypeDecide、CostEstimateGroup::finishBatch()、CostEstimateGroup::estimateFrameCost、predInterSearch、compressFrame()和compressInterCU_dist函数中被调用
* \返回 : 返回当前可用核数 * */
int ThreadPool::tryBondPeers(int maxPeers, sleepbitmap_t peerBitmap, BondedTaskGroup& master)
{
/*
在slicetypeDecide函数中PreLookaheadGroup会调用 : maxPeers为需要初始化的帧数,peerBitmap为-1,master为相应子类PreLookaheadGroup
在CostEstimateGroup::finishBatch()函数中CostEstimateGroup会调用 :maxPeers为需要计算frame-cost的帧数,peerBitmap为-1,master为相应子类CostEstimateGroup
在CostEstimateGroup::estimateFrameCost函数中CostEstimateGroup会调用:maxPeers为当前帧需要执行的slice个数,peerBitmap为-1,master为相应子类CostEstimateGroup
在predInterSearch函数中PME会调用
在compressFrame()函数中WeightAnalysis会调用 :maxPeers为1,peerBitmap为当前任务拥有的核,master为相应子类WeightAnalysis
在compressInterCU_dist函数中pmode会调用
**/
int bondCount = 0; //初始化计数器
do
{
int id = tryAcquireSleepingThread(peerBitmap, 0);
//如果是PreLookaheadGroup、CostEstimateGroup则会只要找到一个当前正在sleep的核即可
//如果是WeightAnalysis、 ??则会返回当前任务拥有核且正在睡眠的核
if (id < 0)
return bondCount; //当前没有可用核直接返回
m_workers[id].m_bondMaster = &master; //此时m_bondMaster不再为null在threadmain中可以运行了
m_workers[id].awaken(); //触发当前核的线程
bondCount++;
}
while (bondCount < maxPeers);
return bondCount; //返回可用的核数
}
ThreadPool* ThreadPool::allocThreadPools(x265_param* p, int& numPools)
{
enum { MAX_NODE_NUM = 127 };
int cpusPerNode[MAX_NODE_NUM + 1];
memset(cpusPerNode, 0, sizeof(cpusPerNode));
int numNumaNodes = X265_MIN(getNumaNodeCount(), MAX_NODE_NUM);
int cpuCount = getCpuCount();
bool bNumaSupport = false;
#if defined(_WIN32_WINNT) && _WIN32_WINNT >= _WIN32_WINNT_WIN7
bNumaSupport = true;
#elif HAVE_LIBNUMA
bNumaSupport = numa_available() >= 0;
#endif
for (int i = 0; i < cpuCount; i++)
{
#if defined(_WIN32_WINNT) && _WIN32_WINNT >= _WIN32_WINNT_WIN7
UCHAR node;
if (GetNumaProcessorNode((UCHAR)i, &node))
cpusPerNode[X265_MIN(node, (UCHAR)MAX_NODE_NUM)]++;
else
#elif HAVE_LIBNUMA
if (bNumaSupport >= 0)
cpusPerNode[X265_MIN(numa_node_of_cpu(i), MAX_NODE_NUM)]++;
else
#endif
cpusPerNode[0]++;
}
if (bNumaSupport && p->logLevel >= X265_LOG_DEBUG)
for (int i = 0; i < numNumaNodes; i++)
x265_log(p, X265_LOG_DEBUG, "detected NUMA node %d with %d logical cores\n", i, cpusPerNode[i]);
/* limit nodes based on param->numaPools */
if (p->numaPools && *p->numaPools)
{
const char *nodeStr = p->numaPools;
for (int i = 0; i < numNumaNodes; i++)
{
if (!*nodeStr)
{
cpusPerNode[i] = 0;
continue;
}
else if (*nodeStr == '-')
cpusPerNode[i] = 0;
else if (*nodeStr == '*')
break;
else if (*nodeStr == '+')
;
else
{
int count = atoi(nodeStr);
cpusPerNode[i] = X265_MIN(count, cpusPerNode[i]);
}
/* consume current node string, comma, and white-space */
while (*nodeStr && *nodeStr != ',')
++nodeStr;
if (*nodeStr == ',' || *nodeStr == ' ')
++nodeStr;
}
}
numPools = 0;
for (int i = 0; i < numNumaNodes; i++)
{
if (bNumaSupport)
x265_log(p, X265_LOG_DEBUG, "NUMA node %d may use %d logical cores\n", i, cpusPerNode[i]);
if (cpusPerNode[i])
numPools += (cpusPerNode[i] + MAX_POOL_THREADS - 1) / MAX_POOL_THREADS;
}
if (!numPools)
return NULL;
if (numPools > p->frameNumThreads)
{
x265_log(p, X265_LOG_DEBUG, "Reducing number of thread pools for frame thread count\n");
numPools = X265_MAX(p->frameNumThreads / 2, 1);
}
ThreadPool *pools = new ThreadPool[numPools];
if (pools)
{
int maxProviders = (p->frameNumThreads + 1 + numPools - 1) / numPools; /* +1 is Lookahead */
int node = 0;
for (int i = 0; i < numPools; i++)
{
while (!cpusPerNode[node])
node++;
int cores = X265_MIN(MAX_POOL_THREADS, cpusPerNode[node]);
if (!pools[i].create(cores, maxProviders, node))
{
X265_FREE(pools);
numPools = 0;
return NULL;
}
if (numNumaNodes > 1)
x265_log(p, X265_LOG_INFO, "Thread pool %d using %d threads on NUMA node %d\n", i, cores, node);
else
x265_log(p, X265_LOG_INFO, "Thread pool created using %d threads\n", cores);
cpusPerNode[node] -= cores;
}
}
else
numPools = 0;
return pools;
}
ThreadPool::ThreadPool()
{
memset(this, 0, sizeof(*this));
}
bool ThreadPool::create(int numThreads, int maxProviders, int node)
{
X265_CHECK(numThreads <= MAX_POOL_THREADS, "a single thread pool cannot have more than MAX_POOL_THREADS threads\n");
m_numaNode = node;
m_numWorkers = numThreads;
m_workers = X265_MALLOC(WorkerThread, numThreads);
/* placement new initialization */
if (m_workers)
for (int i = 0; i < numThreads; i++)
new (m_workers + i)WorkerThread(*this, i);
m_jpTable = X265_MALLOC(JobProvider*, maxProviders);
m_numProviders = 0;
return m_workers && m_jpTable;
}
bool ThreadPool::start()
{
m_isActive = true;
for (int i = 0; i < m_numWorkers; i++)
{
if (!m_workers[i].start())
{
m_isActive = false;
return false;
}
}
return true;
}
void ThreadPool::stopWorkers()
{
if (m_workers)
{
m_isActive = false;
for (int i = 0; i < m_numWorkers; i++)
{
while (!(m_sleepBitmap & ((sleepbitmap_t)1 << i)))
GIVE_UP_TIME();
m_workers[i].awaken();
m_workers[i].stop();
}
}
}
ThreadPool::~ThreadPool()
{
if (m_workers)
{
for (int i = 0; i < m_numWorkers; i++)
m_workers[i].~WorkerThread();
}
X265_FREE(m_workers);
X265_FREE(m_jpTable);
}
/** 函数功能 :设置线程间能够在不同的核运行,而不会同时占用同一个核
/* 调用范围 :只在 WorkerThread::threadMain()和FrameEncoder::threadMain()函数中被调用
* \参数 numaNode :表示当前处于node的位置,如果没有配置,则只有一个就是0
* \返回 :null * */
void ThreadPool::setCurrentThreadAffinity()
{
setThreadNodeAffinity(m_numaNode);
}
/* static */
/** 函数功能 :设置线程间能够在不同的核运行,而不会同时占用同一个核
/* 调用范围 :只在 ThreadPool::setCurrentThreadAffinity()函数中被调用
* \参数 numaNode :表示当前处于node的位置,如果没有配置,则只有一个就是0
* \返回 :null * */
void ThreadPool::setThreadNodeAffinity(int numaNode)
{
#if defined(_WIN32_WINNT) && _WIN32_WINNT >= _WIN32_WINNT_WIN7
GROUP_AFFINITY groupAffinity;//结构体{mask,group,reserve[3]}
if (GetNumaNodeProcessorMaskEx((USHORT)numaNode, &groupAffinity))//获取数据在单机(4核机器)上测试全为{15,0,{0,0,0}}
{
if (SetThreadAffinityMask(GetCurrentThread(), (DWORD_PTR)groupAffinity.Mask))
return;
//通过调用SetThreadAffinityMask,就能为各个线程设置亲缘性屏蔽:
//DWORD_PTR SetThreadAffinityMask(HANDLE hThread, DWORD_PTR dwThreadAffinityMask);
//该函数中的hThread参数用于指明要限制哪个线程, dwThreadAffinityMask用于指明该线程能够在哪个CPU上运行。dwThreadAffinityMask必须是进程的亲缘性屏蔽的相应子集。返回值是线程的前一个亲缘性屏蔽。
//因此,若要将3个线程限制到CPU1、2和3上去运行,可以这样操作:
//Thread 0 can only run on CPU 0.
//SetThreadAffinityMask(hThread0, 0x00000001); //第0位是1
//Threads 1, 2, 3 run on CPUs 1, 2, 3.//第1 2 3位是1
//SetThreadAffinityMask(hThread1, 0x00000002);
//SetThreadAffinityMask(hThread2, 0x00000003);
//SetThreadAffinityMask(hThread3, 0x00000004);
}
x265_log(NULL, X265_LOG_ERROR, "unable to set thread affinity to NUMA node %d\n", numaNode);
#elif HAVE_LIBNUMA
if (numa_available() >= 0)
{
numa_run_on_node(numaNode);
numa_set_preferred(numaNode);
numa_set_localalloc();
return;
}
x265_log(NULL, X265_LOG_ERROR, "unable to set thread affinity to NUMA node %d\n", numaNode);
#else
(void)numaNode;
#endif
}
/* static */
int ThreadPool::getNumaNodeCount()
{
#if defined(_WIN32_WINNT) && _WIN32_WINNT >= _WIN32_WINNT_WIN7
ULONG num = 1;
if (GetNumaHighestNodeNumber(&num))
num++;
return (int)num;
#elif HAVE_LIBNUMA
if (numa_available() >= 0)
return numa_max_node() + 1;
else
return 1;
#else
return 1;
#endif
}
/* static */
int ThreadPool::getCpuCount()
{
#if _WIN32
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
return sysinfo.dwNumberOfProcessors;
#elif __unix__
return sysconf(_SC_NPROCESSORS_ONLN);
#elif MACOS
int nm[2];
size_t len = 4;
uint32_t count;
nm[0] = CTL_HW;
nm[1] = HW_AVAILCPU;
sysctl(nm, 2, &count, &len, NULL, 0);
if (count < 1)
{
nm[1] = HW_NCPU;
sysctl(nm, 2, &count, &len, NULL, 0);
if (count < 1)
count = 1;
}
return count;
#else
return 2; // default to 2 threads, everywhere else
#endif
}
} // end namespace x265
注:问号以及未注释部分 会在x265-1.8版本内更新