2024_ICLR_Honorable mentions_AMORTIZING INTRACTABLE INFERENCE IN LARGE LANGUAGE MODELS

在这里插入图片描述

文章核心总结

该研究针对自回归大语言模型(LLMs)在难解后验分布采样中的局限,提出一种基于生成流网络(GFlowNets)的微调方法,通过摊销贝叶斯推理实现对难解后验的高效采样。核心优势包括提升样本多样性、数据效率和分布外泛化能力,在句子续写、故事填充、主观性分类、算术推理等任务中验证了有效性。

主要创新点

  1. 提出通用摊销采样算法,解决LLMs中序列填充、约束生成等任务的难解后验采样问题。
  2. 将思维链推理建模为潜变量贝叶斯推理问题,通过GFlowNet微调实现数据高效的多步推理和工具使用适配。
  3. 突破传统最大似然训练和奖励最大化强化学习的局限,实现分布匹配式微调,避免模式崩溃,兼顾样本保真度与多样性。
  4. 验证了GFlowNet微调在低数据量场景下的优势,以及在分布外任务中的强泛化能力。

Abstract 翻译

自回归大语言模型(LLMs)通过下一个token的条件分布从训练数据中压缩知识,这限制了只能通过从头到尾的自回归采样来高效查询这些知识。然而,许多重要任务(包括序列续写、文本填充和其他形式的约束生成)都涉及从未知后验分布中采样。我们通过摊销贝叶斯推理来从未知后验中采样,从而解决这一局限。这种摊销通

### MAI_ICLR in IT Context The abbreviation **MAI_ICLR** likely refers to the International Conference on Learning Representations (ICLR), a significant conference within the field of machine learning and deep learning research[^1]. ICLR focuses on fostering discussions about various aspects of learning representations, including algorithms, theory, applications, and more. #### Related Papers One notable paper that aligns with themes often presented at ICLR involves advancements in word sense disambiguation using decision trees constructed from bigrams. This approach has been shown effective as an accurate predictor of word senses[^3]. ```python # Example Python code snippet demonstrating how one might implement part-of-speech tagging, # which can be relevant when discussing natural language processing techniques like those found in NAACL papers. import nltk from nltk.corpus import brown def pos_tagging_example(): sentences = brown.tagged_sents(categories='news') size = int(len(sentences) * 0.1) train_set, test_set = sentences[size:], sentences[:size] t0 = nltk.DefaultTagger('NN') t1 = nltk.UnigramTagger(train_set, backoff=t0) print(t1.evaluate(test_set)) pos_tagging_example() ``` #### Conferences Conferences such as ICLR play pivotal roles in disseminating cutting-edge knowledge across artificial intelligence disciplines. Researchers submit their latest findings concerning neural networks, reinforcement learning, generative models, among others, contributing significantly towards advancing technology frontiers. #### Implementations For classic algorithms frequently referenced during these events—especially ones pertaining to clustering or classification tasks—it's common practice for developers worldwide to create open-source libraries implementing said methodologies efficiently. Popular programming languages like MATLAB and Python host numerous packages dedicated to this purpose due to widespread interest and utility derived therefrom[^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值