Embracing Large Language Models in Traffic Flow Forecasting

本文是LLM系列文章,针对《Embracing Large Language Models in Traffic Flow Forecasting》的翻译。

在交通流预测中采用大型语言模型

摘要

交通流预测旨在根据历史交通状况和道路网络预测未来的交通流。这是智能交通系统中的一个重要问题,已经提出了许多方法。现有的工作主要集中在捕获和利用时空依赖性来预测未来的交通流量。尽管前景光明,但它们在适应交通状况的测试时间环境变化方面存在不足。为了应对这一挑战,我们建议引入大型语言模型(LLM)来帮助交通流量预测,并设计了一种名为大型语言模型增强交通流量预测器(LEAF)的新方法。LEAF采用两个分支,分别使用图和超图结构捕获不同的时空关系。这两个分支首先单独进行预训练,在测试期间,它们会产生不同的预测。基于这些预测,使用大型语言模型来选择最可能的结果。然后,将排名损失作为学习目标,以提高两个分支的预测能力。在几个数据集上进行的广泛实验证明了所提出的LEAF的有效性。

1 引言

2 相关工作

3 方法

4 实验

5 结论

本文提出了一种名为大语言模型增强交通流预测器(LEAF)的新框架,该框架由双分支交通流预测器和基于LLM的选择器组成。预测器采用两个分支:图分支和超图分支,分别捕获成对和非成对的时空关系。选择器利用LLM的判别能力来选择预测器的最佳预测。然后,选择结果用于监督排名损失的预测器。我们进行了广泛的实验来证明所提出的L

Living in a **post–Spring Cloud Netflix** world means embracing the evolution of microservices architecture beyond the once-dominant stack of **Eureka, Ribbon, Hystrix, and Zuul**, which have all entered maintenance mode or been deprecated by Netflix and later removed from Spring Cloud. The good news? The ecosystem has matured. You're not losing functionality — you're gaining **more flexibility, cloud-native alignment, and better integration with modern platforms like Kubernetes**. Here’s how to thrive in this new era: --- ### 🔚 Why Did Spring Cloud Netflix End? | Component | Status | Reason | |---------|--------|--------| | **Eureka** | In maintenance (Netflix) | Self-preservation mode; no new features | | **Ribbon** | Deprecated | Client-side load balancing replaced by Spring Cloud LoadBalancer | | **Hystrix** | Deprecated | Circuit breaking evolved into Resilience4j and resilience patterns | | **Zuul 1/2** | Abandoned | Outdated model; replaced by Spring Cloud Gateway | > ⚠️ As of **Spring Cloud 2020.0.0 (Ilford)**, these components are **no longer included** in the default release train. --- ## ✅ How to Adapt: Key Replacements & Strategies ### 1. ❌ Replace Eureka with Service Discovery Alternatives #### 🔄 Option A: Use **Spring Cloud Kubernetes** - Automatically discovers services via Kubernetes DNS and APIs. - No need for a separate registry. ```yaml # application.yml spring: cloud: kubernetes: discovery: all-namespaces: false ``` ✅ Pros: Native to K8s, zero additional infrastructure ❌ Cons: Tied to Kubernetes only #### 🔄 Option B: Use **Hashicorp Consul** - Full-service mesh capabilities. - Health checks, KV store, UI. ```xml <dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-starter-consul-discovery</artifactId> </dependency> ``` ✅ Pros: Multi-platform, rich feature set ❌ Cons: Requires running Consul agents/servers #### 🔄 Option C: Use **Nacos (by Alibaba)** - Dynamic service discovery, config management, and service metadata. - Popular in China and growing globally. ```xml <dependency> <groupId>com.alibaba.cloud</groupId> <artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId> </dependency> ``` ✅ Pros: All-in-one solution (config + discovery) ❌ Cons: Less familiar outside Alibaba ecosystem --- ### 2. ❌ Replace Ribbon with Spring Cloud LoadBalancer Now the **default client-side load balancer**. #### Usage Example: ```java @RestController public class MyController { @LoadBalanced @Bean WebClient.Builder webClientBuilder() { return WebClient.builder(); } @Autowired WebClient.Builder webClientBuilder; @GetMapping("/call-service") public Mono<String> callService() { return webClientBuilder.build() .get().uri("http://my-microservice/api/data") .retrieve() .bodyToMono(String.class); } } ``` No configuration needed if using `spring-cloud-starter-loadbalancer`. ✅ Supports reactive (`WebClient`) and imperative (`RestTemplate`) styles ✅ Pluggable: Can integrate with service mesh or custom providers --- ### 3. ❌ Replace Hystrix with Resilience4j Modern, functional, lightweight circuit breaker and fault tolerance library. #### Add Dependency: ```xml <dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-starter-circuitbreaker-resilience4j</artifactId> </dependency> ``` #### Configure Circuit Breaker: ```yaml resilience4j: circuitbreaker: instances: backendA: failureRateThreshold: 50 waitDurationInOpenState: 5000ms ringBufferSizeInHalfOpenState: 3 ``` #### Use It: ```java @CircuitBreaker(name = "backendA", fallbackMethod = "fallback") public String getData() { return webClient.get().uri("/api/data").retrieve().bodyToMono(String.class).block(); } public String fallback(Exception e) { return "Fallback response"; } ``` ✅ Lightweight, thread-isolated or semaphore-based ✅ Integrates well with Micrometer, Retry, Rate Limiter, Bulkhead --- ### 4. ❌ Replace Zuul with Spring Cloud Gateway The **official successor**: built on **Spring WebFlux (Reactor)**, fully non-blocking, high-performance API gateway. #### Features: - Route matching (path, host, headers) - Filters (pre/post) - Rate limiting - WebSocket support - Integration with OAuth2, Security, etc. #### Example Route Configuration: ```yaml spring: cloud: gateway: routes: - id: user-service uri: lb://user-service predicates: - Path=/users/** filters: - RewritePath=/users/(?<path>.*), /$\{path} ``` > `lb://` means use load balancing via Spring Cloud LoadBalancer. ✅ High throughput, low latency ✅ Reactive stack enables scalability ✅ Rich filter ecosystem --- ### 5. Embrace Platform-Native Patterns (Especially on Kubernetes) Instead of building your own resilience layer, consider leveraging: | Tool | Purpose | |------|--------| | **Istio / Linkerd** | Service mesh for mTLS, retries, timeouts, observability | | **Kubernetes Services & Ingress** | Built-in routing, health checks, rolling updates | | **Argo Rollouts / Flagger** | Progressive delivery (canary, blue/green) | | **Prometheus + Grafana + OpenTelemetry** | Observability without Hystrix Dashboard | > 💡 Think: *"Do I really need client-side logic?"* Often, the answer is **no** — let the platform handle it. --- ## 🧭 Mindset Shift: From Library-Centric to Platform-Centric | Old World (Netflix Stack) | New World (Cloud-Native) | |---------------------------|----------------------------| | Run everything inside JVM | Leverage sidecars and operators | | Build resilience in code | Defer to service mesh | | Manage discovery manually | Use K8s DNS/service abstraction | | Monolithic gateways | Edge + service mesh split | | Centralized tooling | GitOps, declarative configs | 👉 Focus shifts from **"what libraries do I add?"** to **"how is my platform configured?"** --- ## 🛠️ Migration Checklist | Step | Action | |------|--------| | 1 | Remove `spring-cloud-starter-netflix-*` dependencies | | 2 | Add `spring-cloud-starter-loadbalancer` | | 3 | Replace `RestTemplate` with `WebClient` (or keep but annotate with `@LoadBalanced`) | | 4 | Switch to `Resilience4j` or rely on service mesh for circuit breaking | | 5 | Replace Zuul with **Spring Cloud Gateway** | | 6 | Choose a discovery mechanism: K8s, Consul, Nacos | | 7 | Adopt externalized config: Config Server → **ConfigMap + Secret / Vault / Nacos** | | 8 | Implement observability: Micrometer + Prometheus + Tracing (Zipkin/Jaeger) | --- ## ✅ Summary: Thriving Post–Spring Cloud Netflix You don’t need Netflix OSS to build resilient, scalable microservices. Instead: > **Use Spring Cloud + Kubernetes + Modern Primitives = Better Outcome** 🔧 Tools you should now embrace: - ✅ **Spring Cloud Gateway** - ✅ **Spring Cloud LoadBalancer** - ✅ **Resilience4j** - ✅ **Spring Cloud Kubernetes / Consul / Nacos** - ✅ **Service Mesh (optional but powerful)** 🎯 Design principles: - Prefer **infrastructure-level resilience** over library-level where possible - Favor **GitOps, declarative config, and automation** - Build **polyglot systems** that aren't tied to Java-only solutions ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值