CoD, Towards an Interpretable Medical Agent using Chain of Diagnosis

本文是LLM系列文章,针对《CoD, Towards an Interpretable Medical Agent using Chain of Diagnosis》的翻译。

CoD,迈向使用诊断链的可解释医疗代理

摘要

随着大型语言模型(LLM)的出现,医学诊断领域发生了重大变革,但这些模型中可解释性的挑战在很大程度上仍未得到解决。本研究引入了诊断链(CoD),以提高基于LLM的医学诊断的可解释性。CoD将诊断过程转化为反映医生思维过程的诊断链,提供透明的推理途径。此外,CoD输出疾病置信度分布,以确保决策的透明度。这种可解释性使模型诊断变得可控,并通过置信度的熵降低来帮助识别关键症状以供查询。通过CoD,我们开发了DiagnosticsGPT,能够诊断9604种疾病。实验结果表明,DiagnosisGPT在诊断基准上优于其他LLM。此外,DiagnosisGPT提供了可解释性,同时确保了诊断严谨性的可控性。

1 引言

2 诊断问题定义

3 方法:诊断链

4 实验

5 更多分析

6 结论

在本文中,我们提出了诊断链(CoD)来提高大型语言模型(LLM)在疾病诊断中的可解释性。使用CoD,我们开发了DiagnosisGPT,这是一种支持9604种疾病诊断的LLM。与其他LLM不同,DiagnosisGPT可以提供诊断信心,并依靠自己的疾病数据库进行诊断推理。实验表明,Di

### Chain of Embedding in Machine Learning or NLP Implementation and Concept In the context of neural networks for natural language processing (NLP), embeddings play a crucial role as they transform textual information into numerical vectors that capture semantic meaning. The chain of embedding refers to a series where multiple layers or stages sequentially refine these representations, each layer adding more depth or specificity. #### Definition and Purpose Embeddings are low-dimensional vector representations learned from data which map discrete objects such as words into continuous spaces. In an embedding chain setup within deep learning models like those covered by CMU's Neural Networks for NLP course material[^1], initial word-level embeddings might be passed through several hidden layers designed specifically to enhance certain aspects of representation—such as syntactic structure or contextual relevance. For instance, consider a simple feed-forward network architecture applied on text classification tasks: ```python import torch.nn as nn class SimpleNN(nn.Module): def __init__(self, vocab_size, embed_dim, hidden_dim, output_dim): super(SimpleNN, self).__init__() # Word Embedding Layer self.embedding = nn.Embedding(vocab_size, embed_dim) # Hidden Layers forming part of the 'Chain' self.fc1 = nn.Linear(embed_dim, hidden_dim) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_dim, output_dim) def forward(self, x): embedded = self.embedding(x) # Initial embedding out = self.fc1(embedded.mean(dim=0)) # First transformation step out = self.relu(out) # Activation function application out = self.fc2(out) # Final refinement before prediction return out ``` This code snippet demonstrates how input tokens undergo sequential transformations via different components including linear mappings (`fc1`, `fc2`) interspersed with non-linear activations (`relu`). Each stage contributes towards building richer feature sets culminating in improved model performance over raw inputs alone. The concept extends beyond just single-layer architectures; recurrent structures (RNNs), transformers, attention mechanisms all contribute additional dimensions to this chaining process allowing complex patterns across sequences to emerge effectively during training phases. --related questions-- 1. How do pre-trained embeddings compare against randomly initialized ones when used at the start of an embedding chain? 2. What impact does increasing the number of layers have on capturing nuanced meanings in texts processed through embedding chains? 3. Can you provide examples illustrating differences between static versus dynamic approaches to updating embeddings throughout various stages of a chain? 4. Are there specific evaluation metrics tailored for assessing improvements brought about by deeper embedding chains?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值