Capabilities of Gemini Models in Medicine

本文是LLM系列文章,针对《Capabilities of Gemini Models in Medicine》的翻译。

Gemini模型在医学中的能力

摘要

各种医学应用的卓越表现给人工智能带来了相当大的挑战,需要先进的推理、获取最新的医学知识和理解复杂的多模态数据。Gemini模型在多模态和长上下文推理方面具有很强的通用能力,在医学领域提供了令人兴奋的可能性。基于Gemini 1.0和Gemini 1.5的这些核心优势,我们引入了Med Gemini,这是一个功能强大的多模态模型家族,专门从事医学研究,能够无缝集成网络搜索的使用,并且可以使用自定义编码器有效地针对新的模式进行定制。我们在14个医学基准上对Med Gemini进行了评估,这些基准涵盖了文本、多模式和长上下文应用程序,在其中10个应用程序上建立了最新的最先进(SoTA)性能,并在每个可以直接比较的基准上都超越了GPT-4模型系列,通常是大幅度的。在流行的MedQA(USMLE)基准测试中,我们表现最佳的Med Gemini模型使用一种新颖的不确定性引导搜索策略,实现了91.1%的SoTA性能,比我们之前最好的Med PaLM 2高出4.6%。我们的基于搜索的策略概括了SoTA在新英格兰医学杂志(NEJM)和GeneTuring基准测试中复杂诊断挑战的表现。在NEJM图像挑战和MMMU(健康与医学)等7个多模态基准测试中,Med Gemini的平均相对优势比GPT-4V提高了44.5%。我们通过SoTA在从长时间去标识的健康记录和医疗视频问答中检索任务时的表现,展示了Med Gemini的长上下文能力的有效性,超越了之前仅在上下文学习中使用的定制方法。最后,Med Gemini的表现表明了现实世界的实用性,它在医学文本摘要和转诊信生成等任务上超越了人类专家,同时展示了多模态医学对话、医学研究和教育的巨大潜力。总的来说,我们的研究结果为Med Gemini在许多医学领域的前景提供了令人

### Chain-of-Thought Prompting Mechanism in Large Language Models In large language models, chain-of-thought prompting serves as a method to enhance reasoning capabilities by guiding the model through structured thought processes. This approach involves breaking down complex problems into simpler components and providing step-by-step guidance that mirrors human cognitive processing. The creation of these prompts typically includes selecting examples from training datasets where each example represents part of an overall problem-solving process[^2]. By decomposing tasks into multiple steps, this technique encourages deeper understanding and more accurate predictions compared to traditional methods. For instance, when faced with multi-hop question answering or logical deduction challenges, using such chains allows models not only to generate correct answers but also articulate intermediate thoughts leading up to those conclusions. Such transparency facilitates better interpretability while improving performance on various NLP benchmarks. ```python def create_chain_of_thought_prompt(task_description, examples): """ Creates a chain-of-thought prompt based on given task description and examples. Args: task_description (str): Description of the task at hand. examples (list): List containing tuples of input-output pairs used for demonstration purposes. Returns: str: Formatted string representing the final prompt including both instructions and sample cases. """ formatted_examples = "\n".join([f"Input: {ex[0]}, Output: {ex[1]}" for ex in examples]) return f""" Task: {task_description} Examples: {formatted_examples} Now try solving similar questions following above pattern. """ # Example usage examples = [ ("What color do you get mixing red and blue?", "Purple"), ("If it rains tomorrow, will we have our picnic?", "No") ] print(create_chain_of_thought_prompt("Solve logic puzzles", examples)) ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值