A Comprehensive Evaluation on Event Reasoning of Large Language Models

本文是LLM系列文章,针对《A Comprehensive Evaluation on Event Reasoning of Large Language Models》的翻译。

摘要

事件推理是许多应用程序的基础能力。它需要事件模式知识来执行全局推理,并需要处理事件间关系和推理范式的多样性。LLM在各种关系和推理范式上完成事件推理的程度仍然未知。为了缓解这种差异,我们全面评估了LLM的事件推理能力。我们引入了一个新的基准EV2来评估EVent推理。EV2由模式和实例两个层次的评估组成,在关系和推理范式方面是全面的。我们在EV2上进行了广泛的实验。我们发现LLMs具有完成事件推理的能力,但他们的表现远不能令人满意。我们还注意到LLMs中事件推理能力的不平衡。此外,LLM具有事件模式知识,然而,在如何利用这些知识方面,它们与人类并不一致。基于这些发现,我们介绍了两种方法来指导LLM利用事件模式知识。这两种方法都实现了改进。代码和数据集可在https://github.com/TZWwww/EV2.

1 引言

2 问题定义

3 基准构建

4 实验

5 结果和发现

### Chain-of-Thought Prompting Mechanism in Large Language Models In large language models, chain-of-thought prompting serves as a method to enhance reasoning capabilities by guiding the model through structured thought processes. This approach involves breaking down complex problems into simpler components and providing step-by-step guidance that mirrors human cognitive processing. The creation of these prompts typically includes selecting examples from training datasets where each example represents part of an overall problem-solving process[^2]. By decomposing tasks into multiple steps, this technique encourages deeper understanding and more accurate predictions compared to traditional methods. For instance, when faced with multi-hop question answering or logical deduction challenges, using such chains allows models not only to generate correct answers but also articulate intermediate thoughts leading up to those conclusions. Such transparency facilitates better interpretability while improving performance on various NLP benchmarks. ```python def create_chain_of_thought_prompt(task_description, examples): """ Creates a chain-of-thought prompt based on given task description and examples. Args: task_description (str): Description of the task at hand. examples (list): List containing tuples of input-output pairs used for demonstration purposes. Returns: str: Formatted string representing the final prompt including both instructions and sample cases. """ formatted_examples = "\n".join([f"Input: {ex[0]}, Output: {ex[1]}" for ex in examples]) return f""" Task: {task_description} Examples: {formatted_examples} Now try solving similar questions following above pattern. """ # Example usage examples = [ ("What color do you get mixing red and blue?", "Purple"), ("If it rains tomorrow, will we have our picnic?", "No") ] print(create_chain_of_thought_prompt("Solve logic puzzles", examples)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值