Calibrating Large Language Models Using Their Generations Only

本文是LLM系列文章,针对《Calibrating Large Language Models Using Their Generations Only》的翻译。

仅使用它们的生成来校准大型语言模型

摘要

随着大型语言模型(LLM)越来越多地部署在面向用户的应用程序中,通过准确量化模型对其预测的信心来建立信任和维护安全变得更加重要。然而,找到有效的方法来校准LLM——尤其是当模型的唯一接口是它们生成的文本时——仍然是一个挑战。我们提出了APRICOT(置信目标的辅助预测):一种设置置信目标并训练额外模型的方法,该模型仅基于LLM的文本输入和输出来预测LLM的置信度。这种方法有几个优点:它在概念上很简单,不需要访问超出其输出的目标模型,不干扰语言生成,并且有多种潜在用途,例如通过描述预测的置信度或根据置信度调整给定答案。我们展示了我们的方法在闭卷问答中白盒和黑盒LLM的校准误差方面如何具有竞争力,以检测不正确的LLM答案。

1 引言

2 相关工作

3 方法

4 实验

5 讨论

6 结论

我们提出了APRICOT,这是一种从任何语言模型中单独获得输

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值