Large Language Models as Zero-shot Dialogue State Tracker through Function Calling

828 篇文章

已下架不支持订阅

本文是LLM系列文章,针对《Large Language Models as Zero-shot Dialogue State Tracker through Function Calling》的翻译。

通过函数调用作为零样本对话状态跟踪器的大型语言模型

摘要

大型语言模型由于其在一般上下文中的高级理解和生成能力,在会话系统中越来越普遍。然而,它们在面向任务的对话(TOD)中的有效性仍然不太令人满意,该对话不仅需要生成响应,还需要在特定任务和领域内进行有效的对话状态跟踪(DST)。在这项工作中,我们提出了一种新的方法FNCTOD,通过函数调用来解决具有LLM的DST。该方法改进了零样本DST,允许在无需大量数据收集或模型调整的情况下适应不同的领域。我们的实验结果表明,我们的方法在中等规模的开源和专有LLM中都实现了卓越的性能:在上下文提示下,它使各种7B或13B参数模型能够超越ChatGPT之前实现的最先进的(SOTA),并将ChatGPT的性能提高了5.6%,平均JGA超过了SOTA。GPT-3.5和GPT-4的个体模型结果分别提高了4.8%和14%。我们还表明,通过对一小部分不同的面向任务的对话进行微调,我们可以为中等规模的模型,特别是13B参数的LLaMA2聊天模型,配备与ChatGPT相当的函数调用功能和DST性能,同时保持其聊天功能。我们将开源实验代码和模型。

1 引言

2 相关工作

3 背景

4 方法

5 实验

6 结论

我们引入了一种新的方法来解决LLM的零样本DST的挑战性任务,使其能够处理不同领域的一般对话和面向任务的对话,而无需额外的数据收集。我们在MultiWOZ上的实验结果表明,我们的方法不

已下架不支持订阅

### Zero-Shot Learning Chain in Machine Learning and NLP Applications Zero-shot learning (ZSL) refers to the ability of a model to make accurate predictions about previously unseen classes or data points without any explicit training on these specific instances. In the context of natural language processing (NLP), zero-shot capabilities allow models to understand and generate responses for tasks they have not been specifically trained on, leveraging pre-existing knowledge from related domains. #### Conceptual Overview In traditional supervised learning scenarios, models require labeled datasets corresponding directly to each task at hand. However, with zero-shot approaches, especially within chains or sequences of operations, models can generalize across different types of inputs by relying on abstract reasoning skills learned during initial training phases[^1]. This characteristic is particularly valuable when dealing with rapidly evolving application areas where new categories emerge frequently but obtaining sufficient annotated samples might be challenging. For instance, consider an intelligent assistant that needs to respond appropriately even if it encounters novel user queries outside its original dataset; this would involve chaining together multiple components such as intent recognition, entity extraction, dialogue management—all operating under a unified framework capable of handling unknown elements effectively. #### Practical Implementation Example To demonstrate how one could implement a zero-shot chain using modern large language models like those mentioned earlier which tend towards being closed-source[^3], here’s a simplified Python code snippet demonstrating interaction between two hypothetical modules: ```python from langchain import LangChainModel # Hypothetical API-based access point def perform_zero_shot_task(input_text): """ Demonstrates performing a zero-shot operation utilizing chained services. Args: input_text (str): Input string provided by end-user requiring analysis. Returns: dict: Dictionary containing results after passing through various stages. """ # Initialize service clients based on available APIs classifier_client = LangChainModel(api_key="your_api_key", endpoint="/classify") generator_client = LangChainModel(api_key="your_api_key", endpoint="/generate") classification_result = classifier_client.predict(text=input_text) generated_response = generator_client.generate(prompt=classification_result['label']) return { "input": input_text, "predicted_class": classification_result["label"], "response": generated_response } ``` This example shows how easily adaptable systems built around composability principles can handle diverse requests while maintaining flexibility regarding underlying technologies used—whether open source or proprietary solutions accessed via web interfaces. --related questions-- 1. How does prompt engineering influence performance in zero-shot settings? 2. What are some common challenges faced when implementing real-world applications involving zero-shot learning chains? 3. Can you provide examples of industries benefiting most significantly from adopting zero-shot methodologies? 4. Are there particular architectural designs better suited than others for supporting efficient implementation of zero-shot workflows?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值