Large Language Models on Graphs: A Comprehensive Survey

828 篇文章

已下架不支持订阅

本文系统回顾了大型语言模型(LLM)在图形场景中的应用,涵盖纯图、富含文本的图和文本配对图。讨论了LLM作为预测器、编码器和对齐器的技术,分析了优缺点,并列举了现实世界的应用和开源资源。同时,指出了未来研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Large Language Models on Graphs: A Comprehensive Survey》的翻译。

摘要

大型语言模型(LLM),如ChatGPT和LLaMA,由于其强大的文本编码/解码能力和新发现的涌现能力(如推理),正在自然语言处理方面取得重大进展。虽然LLM主要设计用于处理纯文本,但在许多现实世界场景中,文本数据以图形的形式(例如,学术网络和电子商务网络)与丰富的结构信息相关联,或者图形数据与丰富的文本信息配对的场景(例如,具有描述的分子)。此外,尽管LLM已经显示出其纯基于文本的推理能力,但这种能力是否可以推广到图场景(即基于图的推理)还没有得到充分的探索。在本文中,我们系统地回顾了与图上的大型语言模型相关的场景和技术。我们首先将在图上采用LLM的潜在场景总结为三类,即纯图、富含文本的图和文本配对图。然后,我们讨论了在图上使用LLM的详细技术,包括LLM作为预测器、LLM作为编码器和LLM作为对齐器,并比较了不同模型流派的优缺点。此外,我们还提到了这些方法在现实世界中的应用,并总结了开源代码和基准数据集。最后,我们总结了这一快速发展领域未来潜在的研究方向。相关来源可在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值