An Effective Approach for Extreme Large Language Model Compression

828 篇文章

已下架不支持订阅

本文提出了一种名为RetriKT的新方法,用于将大型语言模型的知识有效压缩到极小规模的模型中。通过构建知识库并使用软提示调整和PPO强化学习,该方法在低资源条件下显著提升了小规模模型在SuperGLUE和GLUE基准测试中的性能。

本文是LLM系列文章,针对《Retrieval-based Knowledge Transfer: An Effective Approach for Extreme Large Language Model Compression》的翻译。

基于检索的知识迁移:一种有效的超大语言模型压缩方法

摘要

大规模预训练语言模型(LLM)在各种自然语言处理(NLP)任务中表现出了卓越的性能。然而,这些模型的巨大规模给它们在现实应用中的部署带来了巨大的挑战。虽然已经提出了许多模型压缩技术,但当模型规模存在显著差距时,大多数技术都不太适合实现极端的模型压缩。在本文中,我们介绍了一种新的压缩范式,称为基于检索的知识迁移(RetriKT),它有效地将LLM的知识迁移到极小规模的模型(例如,1%)。特别是,我们的方法从LLM中提取知识来构建知识库,小规模模型可以从中检索相关信息并利用这些信息进行有效推理。为了提高模型的质量,采用了软提示调整和近端策略优化(PPO)强化学习技术。在SuperGLUE和GLUE基准测试的低资源任务上进行了广泛的实验。结果表明,所提出的方法通过利用LLM的知识显著提高了小规模模型的性能。

1 引言

2 相关工作

3 方法

4 实验设置

5 实验结果与分析

6 结论

我们的研究解决了压缩LLM的任务,并引入了一种开创性的压缩范式,称为基于检索的知识迁移。这种方法通过创建知识库,有效地将LLM的知识迁移到小规模模型中,使小模型能够在推理过程中检索相关信息。通过在常用基准上进行的大量实验,我们证明了我们的框架通过利用LLM中包含的知识,大大提高了小规模模型的性能。在未来的研究中,我们计划研究我们提出的方法在更大的语言模型(如T5-11B)上的应

已下架不支持订阅

<think>我们注意到在之前的代码中有一个导入语句:`frommodel_compressionimportcompress_model_weights`,但是这里提示没有找到`model_compression`模块。因此,我们需要自行实现这个模块中的压缩函数。在之前的代码中,我们有一个`compress_model_weights`函数,它被用于压缩模型权重。但是,这个函数是在同一个文件中定义的,而不是来自外部模块。所以,我们可以将原来的函数定义包含进来。但是,为了代码的完整性,我们将重新实现一个完整的模型压缩工具模块,包括多种压缩方法,并确保它能够被正确导入或内联在代码中。由于问题中提到了“Nomatchingdistributionfoundformodel_compression”,我们可以将原来内联的压缩函数代码整合到当前文件中,避免外部依赖。因此,我们将删除`frommodel_compressionimportcompress_model_weights`这一行,并确保在文件中定义了`compress_model_weights`函数。在之前的代码中,我们已经有一个`compress_model_weights`函数的实现,但它是简化的。现在,我们将扩展它,使其支持更多的压缩方法,并更健壮。下面我们将重新实现一个更完整的模型压缩工具,包括以下压缩方法:1.无压缩(直接存储)2.差分压缩(存储权重变化)3.剪枝+量化(针对低内存设备)4.霍夫曼编码(进一步减小尺寸)同时,我们将添加解压缩功能,以便在边缘设备上恢复权重。但是,请注意:在云端训练服务中,我们只需要生成压缩后的权重包,解压将在边缘设备上进行。因此,我们还需要提供一个边缘设备端的解压工具。由于问题复杂,我们将分两部分:1.云端压缩工具(在CloudTrainer中使用)2.边缘设备解压工具(用C/C++或Python实现,但这里我们提供Python版本以便测试)由于我们是在同一个系统中演示,我们将用Python实现解压函数,并假设边缘设备也使用Python(实际部署时可能需要转换为C/C++)。下面开始实现:</think>### 模型压缩完整实现方案 针对 `model_compression` 模块缺失的问题,我将提供完整的模型压缩实现方案。以下是一个独立的、无需外部依赖的模型压缩模块: ```python import numpy as np import struct import zlib import tensorflow as tf from typing import List, Dict, Tuple, Any class ModelCompressor: """ 模型压缩工具类,支持多种压缩算法 """ @staticmethod def compress_weights(weights: List[np.ndarray], method: str = "pruned_quantized", device_profile: Dict[str, Any] = None) -> Tuple[bytes, Dict]: """ 压缩模型权重 参数: weights: 原始权重列表 method: 压缩方法 (pruned_quantized, differential, huffman, full) device_profile: 设备配置信息 返回: (compressed_weights: bytes, info: dict) """ if method == "differential": return ModelCompressor._differential_compression(weights) elif method == "pruned_quantized": return ModelCompressor._pruned_quantized_compression(weights, device_profile) elif method == "huffman": return ModelCompressor._huffman_compression(weights) else: # 完整权重 return ModelCompressor._full_compression(weights) @staticmethod def decompress_weights(compressed: bytes, method: str, original_shapes: List[Tuple], device_profile: Dict[str, Any] = None) -> List[np.ndarray]: """ 解压缩模型权重 参数: compressed: 压缩后的字节数据 method: 使用的压缩方法 original_shapes: 原始权重形状 device_profile: 设备配置信息 返回: 解压缩后的权重列表 """ if method == "differential": return ModelCompressor._differential_decompression(compressed, original_shapes) elif method == "pruned_quantized": return ModelCompressor._pruned_quantized_decompression(compressed, original_shapes) elif method == "huffman": return ModelCompressor._huffman_decompression(compressed, original_shapes) else: return ModelCompressor._full_decompression(compressed, original_shapes) @staticmethod def _differential_compression(weights: List[np.ndarray]) -> Tuple[bytes, Dict]: """ 权重差分压缩 (仅存储变化) """ compressed = bytearray() info = {"method": "differential", "layers": []} # 存储第一个权重层的完整数据 first_layer = weights[0] compressed.extend(struct.pack('I', first_layer.size)) compressed.extend(first_layer.tobytes()) info["layers"].append({"size": first_layer.size, "type": "full"}) # 后续层使用差分编码 for i in range(1, len(weights)): current = weights[i] # 计算与前一层的差异(简化实现) # 实际应用中应该与基础模型比较 diff = current # 这里简化处理 # 使用游程编码压缩零值 rle_encoded = ModelCompressor._run_length_encode(diff.flatten()) # 添加层信息头 header = struct.pack('II', diff.size, len(rle_encoded)) compressed.extend(header) compressed.extend(rle_encoded) info["layers"].append({ "size": diff.size, "compressed_size": len(rle_encoded), "type": "differential" }) return bytes(compressed), info @staticmethod def _pruned_quantized_compression(weights: List[np.ndarray], device_profile: Dict) -> Tuple[bytes, Dict]: """ 剪枝+量化压缩 """ compressed = bytearray() info = { "method": "pruned_quantized", "original_size": sum(w.nbytes for w in weights), "layers": [] } # 根据设备内存调整压缩强度 memory = device_profile.get("memory", 128) # MB if memory < 64: prune_percent = 70 # 高度压缩 bits = 8 # 8位量化 elif memory < 128: prune_percent = 50 bits = 16 # 16位量化 else: prune_percent = 30 bits = 32 # 32位量化 for w in weights: # 1. 剪枝: 移除接近零的值 threshold = np.percentile(np.abs(w), prune_percent) pruned = np.where(np.abs(w) > threshold, w, 0) # 2. 量化 min_val, max_val = np.min(pruned), np.max(pruned) if bits == 8: dtype = np.uint8 scale = 255.0 / (max_val - min_val) if max_val > min_val else 1.0 quantized = np.uint8((pruned - min_val) * scale) elif bits == 16: dtype = np.uint16 scale = 65535.0 / (max_val - min_val) if max_val > min_val else 1.0 quantized = np.uint16((pruned - min_val) * scale) else: # 32位 dtype = np.float32 quantized = pruned.astype(np.float32) # 3. 霍夫曼编码 if bits < 32: huffman_encoded = ModelCompressor._huffman_encode(quantized.flatten()) else: huffman_encoded = quantized.tobytes() # 添加层信息头 header = struct.pack('IIddI', w.shape[0], w.shape[1] if len(w.shape) > 1 else 0, min_val, max_val, len(huffman_encoded)) compressed.extend(header) compressed.extend(huffman_encoded) info["layers"].append({ "shape": w.shape, "min": min_val, "max": max_val, "compressed_size": len(huffman_encoded), "bits": bits }) info["compressed_size"] = len(compressed) info["compression_ratio"] = info["original_size"] / info["compressed_size"] return bytes(compressed), info @staticmethod def _huffman_compression(weights: List[np.ndarray]) -> Tuple[bytes, Dict]: """ 霍夫曼编码压缩 """ compressed = bytearray() info = { "method": "huffman", "original_size": sum(w.nbytes for w in weights), "layers": [] } for w in weights: # 展平权重 flat_weights = w.flatten() # 霍夫曼编码 huffman_encoded = ModelCompressor._huffman_encode(flat_weights) # 添加层信息头 header = struct.pack('II', w.size, len(huffman_encoded)) compressed.extend(header) compressed.extend(huffman_encoded) info["layers"].append({ "size": w.size, "compressed_size": len(huffman_encoded) }) info["compressed_size"] = len(compressed) return bytes(compressed), info @staticmethod def _full_compression(weights: List[np.ndarray]) -> Tuple[bytes, Dict]: """完整权重压缩(实际只是打包)""" compressed = bytearray() info = {"method": "full", "layers": []} for w in weights: # 添加层信息头 header = struct.pack('I', w.size) compressed.extend(header) compressed.extend(w.tobytes()) info["layers"].append({ "size": w.size, "compressed_size": w.nbytes }) return bytes(compressed), info @staticmethod def _run_length_encode(data: np.ndarray) -> bytes: """游程编码实现""" encoded = bytearray() count = 0 prev = None for val in data: if val == prev: count += 1 if count == 255: # 最大计数255 encoded.extend(struct.pack('Bf', count, prev)) count = 0 else: if prev is not None: encoded.extend(struct.pack('Bf', count, prev)) prev = val count = 1 if count > 0: encoded.extend(struct.pack('Bf', count, prev)) return bytes(encoded) @staticmethod def _huffman_encode(data: np.ndarray) -> bytes: """霍夫曼编码实现""" from collections import defaultdict # 简化实现 - 实际应用应使用更高效算法 freq = defaultdict(int) for val in data: freq[val] += 1 # 构建霍夫曼树(简化版) # 实际应用中应使用堆优化 codes = {} for val in freq: codes[val] = bin(val)[2:].zfill(8) # 简化处理 # 编码数据 encoded_bits = ''.join(codes[val] for val in data) # 填充到完整字节 padding = 8 - len(encoded_bits) % 8 if padding != 8: encoded_bits += '0' * padding # 转换为字节 encoded_bytes = bytearray() for i in range(0, len(encoded_bits), 8): byte_str = encoded_bits[i:i+8] encoded_bytes.append(int(byte_str, 2)) # 添加头信息:频率表大小和编码数据长度 header = struct.pack('II', len(freq), len(encoded_bytes)) return header + bytes(encoded_bytes) # 解压缩方法 @staticmethod def _differential_decompression(compressed: bytes, shapes: List[Tuple]) -> List[np.ndarray]: weights = [] offset = 0 # 解压第一层 size = struct.unpack_from('I', compressed, offset)[0] offset += 4 layer_size = size first_layer = np.frombuffer(compressed[offset:offset+layer_size], dtype=np.float32) first_layer = first_layer.reshape(shapes[0]) weights.append(first_layer) offset += layer_size # 解压后续层 for shape in shapes[1:]: # 读取头信息 size, rle_size = struct.unpack_from('II', compressed, offset) offset += 8 # 读取游程编码数据 rle_data = compressed[offset:offset+rle_size] offset += rle_size # 解压游程编码 diff_flat = ModelCompressor._run_length_decode(rle_data, size) diff = diff_flat.reshape(shape) # 重建权重(简化:直接使用差值) weights.append(diff) return weights @staticmethod def _pruned_quantized_decompression(compressed: bytes, shapes: List[Tuple]) -> List[np.ndarray]: weights = [] offset = 0 for shape in shapes: # 读取头信息 dim1, dim2, min_val, max_val, data_size = struct.unpack_from('IIddI', compressed, offset) offset += 28 # 4*2 + 8*2 + 4 # 读取压缩数据 huffman_data = compressed[offset:offset+data_size] offset += data_size # 霍夫曼解码 quantized = ModelCompressor._huffman_decode(huffman_data) # 重塑形状 if dim2 == 0: # 1D数组 quantized = quantized.reshape(dim1) else: quantized = quantized.reshape(dim1, dim2) # 反量化 if quantized.dtype in [np.uint8, np.uint16]: if quantized.dtype == np.uint8: scale = 255.0 else: scale = 65535.0 restored = min_val + quantized.astype(np.float32) * (max_val - min_val) / scale else: restored = quantized weights.append(restored) return weights @staticmethod def _run_length_decode(data: bytes, expected_size: int) -> np.ndarray: """游程编码解码""" decoded = [] offset = 0 while offset < len(data) and len(decoded) < expected_size: count, val = struct.unpack_from('Bf', data, offset) offset += 5 decoded.extend([val] * count) return np.array(decoded[:expected_size], dtype=np.float32) @staticmethod def _huffman_decode(data: bytes) -> np.ndarray: """霍夫曼解码(简化版)""" # 读取头信息 freq_size, data_size = struct.unpack_from('II', data) offset = 8 # 实际应用中应使用霍夫曼树 # 这里简化处理:直接读取后面的字节 encoded_bytes = data[offset:offset+data_size] # 转换为位字符串 bits = ''.join(f'{byte:08b}' for byte in encoded_bytes) # 解码(简化:假设是8位原始值) decoded = [] for i in range(0, len(bits), 8): byte_str = bits[i:i+8] decoded.append(int(byte_str, 2)) return np.array(decoded, dtype=np.uint8) @staticmethod def _full_decompression(compressed: bytes, shapes: List[Tuple]) -> List[np.ndarray]: weights = [] offset = 0 for shape in shapes: size = struct.unpack_from('I', compressed, offset)[0] offset += 4 layer_size = size * 4 # float32 每个值4字节 weight_data = np.frombuffer(compressed[offset:offset+layer_size], dtype=np.float32) weights.append(weight_data.reshape(shape)) offset += layer_size return weights # ====================== 集成到CloudTrainer ====================== # 在CloudTrainer中替换原有的compress_model_weights函数 def compress_model_weights(weights: list, method: str = "differential", device_profile: dict = None) -> tuple: """ 压缩模型权重 返回: (compressed_weights: bytes, info: dict) """ return ModelCompressor.compress_weights(weights, method, device_profile) # ====================== 测试代码 ====================== def test_compression(): """测试压缩解压缩功能""" # 创建示例权重 weights = [ np.random.randn(128, 64).astype(np.float32), np.random.randn(64, 32).astype(np.float32), np.random.randn(32, 10).astype(np.float32) ] # 保存原始形状 original_shapes = [w.shape for w in weights] # 测试不同压缩方法 methods = ["differential", "pruned_quantized", "huffman", "full"] device_profile = {"memory": 64} # 低内存设备 for method in methods: print(f"\n=== 测试 {method} 压缩方法 ===") # 压缩 compressed, info = ModelCompressor.compress_weights(weights, method, device_profile) print(f"压缩信息: {info}") print(f"原始大小: {sum(w.nbytes for w in weights)/1024:.2f} KB") print(f"压缩大小: {len(compressed)/1024:.2f} KB") print(f"压缩率: {sum(w.nbytes for w in weights)/len(compressed):.2f}x") # 解压缩 decompressed = ModelCompressor.decompress_weights( compressed, method, original_shapes, device_profile ) # 验证准确性 valid = True for orig, dec in zip(weights, decompressed): if orig.shape != dec.shape: print(f"形状不匹配: {orig.shape} vs {dec.shape}") valid = False break # 对于剪枝量化方法,允许一定误差 if method == "pruned_quantized": error = np.mean(np.abs(orig - dec)) if error > 0.1: # 允许10%的平均误差 print(f"误差过大: {error:.4f}") valid = False else: if not np.allclose(orig, dec, atol=1e-5): print("值不完全匹配") valid = False print(f"验证结果: {'成功' if valid else '失败'}") if __name__ == "__main__": test_compression() ``` ### 模型压缩技术详解 #### 1. 剪枝+量化压缩 ```python @staticmethod def _pruned_quantized_compression(weights, device_profile): # 根据设备内存调整压缩强度 memory = device_profile.get("memory", 128) if memory < 64: prune_percent = 70 # 高度压缩 bits = 8 # 8位量化 elif memory < 128: prune_percent = 50 bits = 16 # 16位量化 else: prune_percent = 30 bits = 32 # 32位量化 # 剪枝和量化处理 threshold = np.percentile(np.abs(w), prune_percent) pruned = np.where(np.abs(w) > threshold, w, 0) min_val, max_val = np.min(pruned), np.max(pruned) quantized = np.uint8((pruned - min_val) * scale) # 霍夫曼编码 huffman_encoded = ModelCompressor._huffman_encode(quantized.flatten()) ``` #### 2. 差分压缩 ```python @staticmethod def _differential_compression(weights): # 存储第一个权重层的完整数据 first_layer = weights[0] compressed.extend(first_layer.tobytes()) # 后续层使用差分编码 for i in range(1, len(weights)): current = weights[i] diff = current # 实际应用中应与基础模型比较 # 使用游程编码压缩零值 rle_encoded = ModelCompressor._run_length_encode(diff.flatten()) ``` #### 3. 霍夫曼编码 ```python @staticmethod def _huffman_encode(data): # 统计频率 freq = defaultdict(int) for val in data: freq[val] += 1 # 构建霍夫曼树(简化版) codes = {} for val in freq: codes[val] = bin(val)[2:].zfill(8) # 编码数据 encoded_bits = ''.join(codes[val] for val in data) # 转换为字节 encoded_bytes = bytearray() for i in range(0, len(encoded_bits), 8): byte_str = encoded_bits[i:i+8] encoded_bytes.append(int(byte_str, 2)) ``` ### 压缩策略选择算法 ```python def select_compression_method(device_profile: dict, model_size: float) -> str: """ 根据设备配置和模型大小选择最佳压缩方法 参数: device_profile: 设备配置信息 model_size: 原始模型大小(MB) 返回: 推荐的压缩方法 """ memory = device_profile.get("memory", 128) # MB cpu = device_profile.get("cpu", "Cortex-A53") network = device_profile.get("network", "4G") # 网络类型 # 内存小于64MB的设备 if memory < 64: if model_size > 10: # 大型模型 return "pruned_quantized" else: return "huffman" # 内存64-128MB的设备 elif memory < 128: if "slow" in cpu or "M0" in cpu: # 低速CPU return "differential" elif model_size > 20: return "pruned_quantized" else: return "huffman" # 高速网络连接 elif network in ["5G", "WiFi6", "Ethernet"]: return "differential" # 其他情况 else: return "huffman" ``` ### 边缘设备集成示例 ```python # edge_device.py import numpy as np import requests from model_compression import ModelCompressor class EdgeModelUpdater: def __init__(self, base_model): self.base_model = base_model self.current_version = 0 def download_update(self, update_url): """下载模型更新""" response = requests.get(update_url) return response.content def apply_update(self, compressed_data, method, metadata): """应用模型更新""" # 获取原始权重形状 original_shapes = [w.shape for w in self.base_model.get_weights()] # 解压缩权重 new_weights = ModelCompressor.decompress_weights( compressed_data, method, original_shapes, self.device_profile ) # 应用新权重 self.base_model.set_weights(new_weights) self.current_version = metadata['version'] print(f"模型更新到版本 {self.current_version}") def update_model(self, cloud_endpoint): """检查并应用更新""" # 发送更新检查请求 response = requests.post( f"{cloud_endpoint}/check_update", json={"device_id": self.device_id, "current_version": self.current_version} ) if response.json().get("update_available"): update_info = response.json() compressed_data = self.download_update(update_info['model_weights_url']) self.apply_update( compressed_data, update_info['compression_method'], update_info ) return True return False ``` ### 性能优化技巧 1. **增量压缩**: ```python def incremental_compression(new_weights, base_weights): """只压缩与基础模型的差异部分""" compressed_diffs = [] for new_w, base_w in zip(new_weights, base_weights): diff = new_w - base_w # 只存储显著变化 significant_diff = np.where(np.abs(diff) > 0.01 * np.max(np.abs(base_w)), diff, 0) compressed_diffs.append(compress_layer(significant_diff)) return compressed_diffs ``` 2. **分层压缩策略**: ```python def layer_specific_compression(weights): """根据层类型应用不同压缩""" compressed = [] for i, w in enumerate(weights): if i == 0: # 输入层 compressed.append(compress_pruned_quantized(w)) elif i == len(weights) - 1: # 输出层 compressed.append(compress_differential(w)) else: # 隐藏层 compressed.append(compress_huffman(w)) return compressed ``` 3. **硬件加速压缩**: ```python def gpu_accelerated_compression(weights): """使用TensorFlow GPU加速压缩""" with tf.device('/GPU:0'): compressed_weights = [] for w in weights: # 在GPU上执行剪枝和量化 tf_w = tf.constant(w) pruned = tf.where(tf.abs(tf_w) > threshold, tf_w, 0) quantized = tf.quantization.fake_quant_with_min_max_args( pruned, min_val, max_val, num_bits=8 ) compressed_weights.append(quantized.numpy().tobytes()) return compressed_weights ``` ### 生产环境建议 1. **压缩流水线**: ```python def compression_pipeline(weights): # 1. 权重剪枝 pruned = prune_weights(weights, sparsity=0.7) # 2. 量化 quantized = quantize_weights(pruned, bits=8) # 3. 熵编码 compressed = huffman_encode(quantized) # 4. 额外压缩 final = zlib.compress(compressed) return final ``` 2. **安全压缩**: ```python def secure_compression(weights, key): """加密模型权重""" # 1. 压缩 compressed = compress_weights(weights) # 2. 加密 cipher = AES.new(key, AES.MODE_EAX) ciphertext, tag = cipher.encrypt_and_digest(compressed) # 3. 打包 return cipher.nonce + tag + ciphertext ``` 3. **性能监控**: ```python class CompressionMonitor: def __init__(self): self.metrics = { "compression_ratio": [], "compression_time": [], "decompression_time": [], "accuracy_drop": [] } def log_compression(self, original_size, compressed_size, time_taken): ratio = original_size / compressed_size self.metrics["compression_ratio"].append(ratio) self.metrics["compression_time"].append(time_taken) def log_decompression(self, time_taken, accuracy_drop=0): self.metrics["decompression_time"].append(time_taken) self.metrics["accuracy_drop"].append(accuracy_drop) def get_report(self): return { "avg_ratio": np.mean(self.metrics["compression_ratio"]), "avg_compress_time": np.mean(self.metrics["compression_time"]), "avg_decompress_time": np.mean(self.metrics["decompression_time"]), "max_accuracy_drop": np.max(self.metrics["accuracy_drop"]) } ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值