- 博客(35)
- 收藏
- 关注

原创 2024大模型的新综述速递!Training and Serving System of Foundation Models: A Comprehensive Survey
2024大模型(基座模型)的新综述速递!Training and Serving System of Foundation Models: A Comprehensive Survey
2024-01-22 01:20:08
1729
原创 Lyfe Agents:低成本实时社交交互的生成智能体(Lyfe Agents generative agents for low-cost real-time social interaction)
在人工智能的迅速发展中,生成智能体在模拟复杂社交行为上的潜力日渐显现。然而,一个挑战始终存在:如何在实时交互中保持智能体的反应速度,同时还要控制计算成本?最新的研究成果——Lyfe Agents,为这个问题提供了一个令人兴奋的解决方案。论文题目:Lyfe Agents: Generative agents for low-cost real-time social interactions
2024-01-21 23:59:22
794
原创 基于强化学习的语言代理在狼人杀中的战略对局(Language Agents with RL for Strategic Play in the Werewolf Game)
基于强化学习的语言代理在狼人杀中的战略对局(Language Agents with RL for Strategic Play in the Werewolf Game)在人工智能的领域里,大型语言模型(LLM)的发展正开辟着新的天地。大多数研究聚焦在单一智能体或者合作任务上,但对于多智能体这样的复杂场景,探索还远远不够。今天,我们来探讨一项有趣的研究—如何将强化学习(RL)技术应用到LLM,以在诸如狼人杀这种社交推理游戏中培养出具备高度战略思维的语言代理。
2024-01-21 23:58:47
1192
1
原创 使用LM仿真沙盒识别LM代理风险(Identifying the Risks of LM Agents with an LM-Emulated Sandbox)
在AI领域,语言模型(LM)代理技术正迅猛发展,带来了诸如ChatGPT插件等强大工具。然而,随之而来的潜在风险也不容忽视——从私人数据泄露到财务损失,种种风险不断被放大。传统的风险识别方法不仅耗时耗力,且随着工具复杂性的增加,成本也水涨船高。要在这样的趋势下发现那些发生概率低但可能导致严重后果的风险,无疑是一项挑战。使用LM仿真沙盒识别LM代理风险(Identifying the Risks of LM Agents with an LM-Emulated Sandbox)
2024-01-21 23:58:07
574
原创 从社会心理学的角度探索LLM智能代理的协作机制(Exploring Collaboration Mechanisms for LLM Agents A Social Psychology View)
从社会心理学的角度探索LLM智能代理的协作机制(Exploring Collaboration Mechanisms for LLM Agents A Social Psychology View)在自然语言处理(NLP)技术日益深入人类社会生活的今天,我们不禁要问:众多大型语言模型(LLM)构成的多代理系统是否能够模仿人类之间的协作智能?
2024-01-21 23:57:35
855
原创 LLM-Co框架:为智能体协作而生(Evaluating Multi-Agent Coordination Abilities in Large Language Models)
在人工智能领域,构建能够与人类及其他系统协作的智能体是一个备受关注的课题。大型语言模型(Large Language Models,LLMs)以其卓越的自然语言理解和生成能力,成为该课题中的一股新兴力量。今天,我们来探讨一项新研究,该研究评估了采用LLMs的智能体在不同协作场景下的表现,并提出了一个专为LLMs设计的协作框架——LLM-Coordination(LLM-Co)。
2024-01-21 23:57:00
886
原创 多智能体协作,可与人类合作的Agent(Building Cooperative Embodied Agents Modularly with Large Language Models)
多智能体协作,可与人类合作的Agent(Building Cooperative Embodied Agents Modularly with Large Language Models)
2024-01-21 23:56:22
874
原创 AVALON思维游戏:通过递归思考对抗欺骗(Avalon‘s Game of Thoughts: Battle Against Deception through Recursive Contemp)
AVALON思维游戏:通过递归思考对抗欺骗论文题目:Avalon's Game of Thoughts: Battle Against Deception through Recursive Contemplation
2024-01-21 22:51:24
2119
原创 AGENTVERSE:促进多智能体协作和探索涌现行为(Agentverse: Facilitating multi-agent collaboration and exploring emergen)
AGENTVERSE:促进多智能体协作和探索涌现行为(Agentverse: Facilitating multi-agent collaboration and exploring emergen)
2024-01-21 22:12:26
1598
原创 【Agent论文】大型语言模型智能评估新尺度:AGENTBENCH(Agentbench: Evaluating llms as agents)
【Agent论文】大型语言模型智能评估新尺度:AGENTBENCH(Agentbench: Evaluating llms as agents)
2024-01-21 19:19:28
2209
原创 【论文笔记】【存储】Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware Communication C~
【论文笔记】【存储】Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware Communication C~
2023-11-11 04:27:13
421
原创 【论文笔记】【存储】Tempo: Accelerating Transformer-Based Model Training through Memory Footprint Reduction
【论文笔记】【存储】Tempo: Accelerating Transformer-Based Model Training through Memory Footprint Reduction
2023-11-04 12:35:05
248
原创 【论文笔记】【存储】FlashNeuron: SSD-Enabled Large-Batch Training of Very Deep Neural Networks
【论文笔记】【存储】FlashNeuron: SSD-Enabled Large-Batch Training of Very Deep Neural Networks
2023-11-04 10:27:10
431
2
原创 【论文笔记】【存储】SuperNeurons: Dynamic GPU Memory Management for Training Deep Neural Networks
【论文笔记】【存储】SuperNeurons: Dynamic GPU Memory Management for Training Deep Neural Networks
2023-11-04 02:24:29
399
2
原创 【论文笔记】【存储】SwapAdvisor: Pushing Deep Learning Beyond the GPU Memory Limit via Smart Swapping
【论文笔记】【存储】SwapAdvisor: Pushing Deep Learning Beyond the GPU Memory Limit via Smart Swapping
2023-11-04 00:44:04
493
2
原创 【论文笔记】【存储】DeepUM: Tensor Migration and Prefetching in Unified Memory
【论文笔记】【存储】DeepUM: Tensor Migration and Prefetching in Unified Memory
2023-11-03 03:39:15
657
6
原创 【论文笔记】【存储】Capuchin: Tensor-based GPU Memory Management for Deep Learning
【论文笔记】【存储】Capuchin: Tensor-based GPU Memory Management for Deep Learning
2023-11-02 23:48:17
451
2
原创 【论文笔记】【存储】Buddy Compression: Enabling Larger Memory for Deep Learning and HPC Workloads on GPUs
【论文笔记】【存储】Buddy Compression: Enabling Larger Memory for Deep Learning and HPC Workloads on GPUs
2023-11-02 16:54:55
295
原创 【Deepspeed-DeepSpeedZeroOptimizer-02】ZeRO源码精读02:DeepSpeedZeroOptimizer(从init到ZeRO(1、2)训练流程解析)
【Deepspeed-DeepSpeedZeroOptimizer-02】ZeRO源码精读02:DeepSpeedZeroOptimizer(从init到ZeRO(1、2)训练流程解析)
2023-10-29 17:00:33
1599
1
原创 【Deepspeed-DeepSpeedZeroOptimizer-01】ZeRO源码精读01:DeepSpeedZeroOptimizer(ZeRO-1,ZeRO-2)
【Deepspeed-DeepSpeedZeroOptimizer-01】ZeRO源码精读01:DeepSpeedZeroOptimizer(ZeRO-1,ZeRO-2)
2023-10-28 17:09:29
3739
12
原创 【Deepspeed-Adagrad】Deepspeed的Adagrad实现代码精读
【Deepspeed-Adagrad】Deepspeed的Adagrad实现代码精读
2023-10-26 01:21:43
270
原创 【Deepspeed-Adam】Deepspeed的Adam实现代码精读(cpu_adam、fused_adam)
Deepspeed的Adam实现的代码精读,其中包括了CPU版本的Adam,还有高度优化的GPU版本的Adam,代码精读与理解。
2023-10-22 13:54:49
1510
2
原创 15.ZeRO-infinity: breaking the GPU memory wall for extreme scale deep learning
ZeRO-infinity: breaking the GPU memory wall for extreme scale deep learning该论文提出了一种突破GPU内存限制的方法,用于极大规模深度学习任务。
2023-09-09 02:06:24
191
转载 14.Chimera: efficiently training large-scale neural networks with bidirectional pipelines
Chimera: efficiently training large-scale neural networks with bidirectional pipelines 阅读笔记
2023-09-09 02:03:57
183
转载 13.Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM
Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM 阅读笔记
2023-09-09 02:00:26
222
原创 12.ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
ZeRO: Memory Optimizations Toward Training Trillion Parameter Models 阅读笔记
2023-09-09 01:58:59
236
转载 8.Generating Training Data with Language Models: Towards Zero-Shot Language Understanding
Generating Training Data with Language Models: Towards Zero-Shot Language Understanding 阅读笔记
2023-09-09 01:03:16
80
转载 5.Decision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence Modeling 阅读笔记
2023-09-09 00:56:33
89
转载 3.GPipe: efficient training of giant neural networks using pipeline parallelism
[pipeline parallelism] GPipe: efficient training of giant neural networks using pipeline parallelism 阅读笔记
2023-09-09 00:51:19
71
转载 1.FasterMoE:Modeling and Optimizing Training of Large-Scale Dynamic Pre-Trained Models
[distributed MoE model training] FasterMoE: modeling and optimizing training of large-scale dynamic pre-trained models 阅读笔记
2023-09-09 00:39:54
178
原创 SpringMVC4.3+jkd1.8+tomcat8.5第一个小程序及简单测试
//嘿!手动原创标识经过多天的学习,准备上手操作加深对SpringMVC的理解了。对书上的各种代码和方法进行验证学习。1.IDEA新建progect,选spring,选springmvc,选上webapplicantion2.输入project的文件名,我的是myspringmvc3.IDEA帮我们导入好了jar包,都在lib目录下4.到apache官方下载tomcat最新版本,tomc...
2018-12-28 10:57:39
705
1
原创 配置admin后续
这一篇接上一篇的博文在setting中配置一下在sys.path.insert(0,os.path.join(BASE_DIR,“apps”))下加一行sys.path.insert(0,os.path.join(BASE_DIR,“etc_apps”))这样在命令行就能找到xadmin在app的目录下,新建一个adminx.py(userprofile由于覆盖了user表,所以不用注册...
2018-09-19 00:11:42
310
原创 开始配置后台数据库
开始配置django做好前期的安装工作之后,开始了1.配置settingDATABASES = {‘default’: {‘ENGINE’: ‘django.db.backends.mysql’,‘NAME’: “hotel”,‘USER’:‘root’,‘PASSWORD’:‘password’,‘HOST’:‘127.0.0.1’}首先配置好这里在mysql中建立一个...
2018-09-18 21:11:18
754
原创 课程设计:小型宾馆管理系统01
1.题目要求 •顾客入住、退房 •房间预订 •换房处理 •续住管理 •折扣2.架构选择:B/S B/S结构,即Browser/Server(浏览器/服务器)结构,是随着Internet技术的兴起,对C/S结构的一种变化 或者改进的结构。在这种结构下,用户界面完全通过WWW浏览器实现。3.语言选择:Python html ccs JavaScript html...
2018-09-17 16:25:48
2546
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人