Reasoning with Language Model Prompting: A Survey

828 篇文章

已下架不支持订阅

本文综述了语言模型提示推理的最新研究,探讨其在复杂问题解决中的应用,如医疗诊断。文章比较不同方法,提供学习资源,并展望未来研究趋势。

本文是LLM系列的文章,针对《Reasoning with Language Model Prompting: A Survey》的翻译。

摘要

推理作为解决复杂问题的基本能力,可以为各种现实应用提供后端支持,如医疗诊断、协商等。本文对语言模型提示推理的前沿研究进行了综述。我们以比较和总结的方式介绍研究工作,并提供系统的资源帮助初学者。我们还讨论了这种推理能力出现的潜在原因,并强调了未来的研究方向。

1 引言

2 前言

3 方法分类

4 比较和讨论

5 基准与资源

6 未来方向

7 结论与视角

本文对基于语言模型提示的推理进行了综述,包括全面的比较和几个研究方向。在未来,我们设想在NLP和其他领域的方法之间有一个更有效的协同作用,并希望复杂和高效的LM提示模型将越来越多地有助于提高推理性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值