本文是LLM系列文章,针对《Recommender Systems in the Era of Large Language Models (LLMs)》的翻译。
大语言模型时代的推荐系统
摘要
随着电子商务和网络应用程序的繁荣,推荐系统(RecSys)已成为我们日常生活中的一个重要组成部分,提供符合用户偏好的个性化建议。尽管深度神经网络(DNN)通过建模用户-项目交互并结合其文本辅助信息,在增强推荐系统方面取得了重大进展,但这些基于DNN的方法仍然存在一些局限性,例如难以有效理解用户的兴趣和捕获文本辅助信息,在推广到各种可见/不可见的推荐场景以及对其预测进行推理方面的能力不足等。与此同时,大型语言模型(LLM)的出现,如ChatGPT和GPT4,已经彻底改变了自然语言处理(NLP)和人工智能(AI)领域,由于他们在语言理解和生成的基本职责方面的卓越能力,以及令人印象深刻的泛化和推理能力。因此,最近的研究试图利用LLM的力量来增强推荐系统。鉴于这一研究方向在推荐系统中的快速发展,迫切需要对现有的LLM授权推荐系统进行系统概述,以便为相关领域的研究人员和从业者提供深入的了解。因此,在本次调查中,我们从预训练、微调和提示等多个方面对LLM授权推荐系统进行了全面的审查。更具体地说,我们首先介绍了利用LLM(作为特征编码器)的力量来学习用户和项目表示的代表性方法。然后,我们从三个范式,即预训练、微调和提示,回顾了LLM最近用于增强推荐系统的先进技术。最后,我们全面讨论了这一新兴领域的未来发展方向。

本文探讨了大型语言模型(LLM)如何改变推荐系统(RecSys),包括使用LLM进行深度表示学习、预训练、微调和提示方法。尽管LLM已经在NLP和AI领域展现出强大的潜力,但在RecSys中的应用仍处于早期阶段,未来可能涉及幻觉缓解、领域特定LLM、微调效率和数据增强等领域。
订阅专栏 解锁全文
1691

被折叠的 条评论
为什么被折叠?



