MindMap: Knowledge Graph Prompting Sparks Graph of Thoughts in Large Language Models

828 篇文章

已下架不支持订阅

本文研究如何使用知识图谱提示改进LLM,使其能够理解和利用外部知识进行推理,生成的思维导图揭示了LLM的推理路径。实验表明,MindMap提示在问答任务中显著提高了GPT-3.5的性能,并且在结构化知识获取上优于文档检索方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《MindMap: Knowledge Graph Prompting Sparks Graph of Thoughts in Large Language Models》的翻译。

思维导图:大型语言模型中的知识图谱提示火花思维图

摘要

LLM通常在吸收新知识的能力、幻觉的产生以及决策过程的透明度方面表现出局限性。在本文中,我们探讨了如何用知识图谱(KG)提示LLM,作为一种补救措施,让LLM了解最新知识,并从LLM中引出推理途径。具体来说,我们构建了一个提示管道,赋予LLM理解KG输入的能力,并使用组合的内隐知识和检索到的外部知识进行推断。此外,我们还研究了启发思维导图,LLM在思维导图上进行推理并生成答案。研究表明,生成的思维导图展示了基于知识本体的LLM推理路径,从而为在生产中探究和衡量LLM推理带来了前景。在三个问答数据集上的实验也表明,MindMap提示带来了显著的经验增益。例如,使用MindMap提示GPT-3.5会持续产生超过GPT-4的压倒性性能。我们还证明,通过从KG中检索结构化事实,MindMap可以优于一系列使用文档检索方法的提示,受益于KG中更准确、简洁和全面的知识。为了重现我们的结果并进一步扩展框架,我们在https://github.com/wylwilling/MindMap上开源了代

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值