Blockwise Parallel Transformer for Long Context Large Models

828 篇文章

已下架不支持订阅

本文提出分块并行Transformer(BPT),解决Transformer处理长序列时的内存瓶颈问题。BPT能处理比普通Transformer长32倍的序列,内存效率提升,适用于需要处理长序列和长期依赖的任务。实验表明,BPT在减少内存需求的同时,性能也得到提高。

本文是LLM系列文章,针对《Blockwise Parallel Transformer for Long Context Large Models》的翻译。

摘要

Transformer已经成为最先进的自然语言处理模型的基石,在广泛的人工智能应用中展示了卓越的性能。然而,Transformer中的自注意机制和大型前馈网络带来的内存需求限制了它们处理长序列的能力,从而给涉及多个长序列或长期依赖性的任务带来了挑战。我们提出了一种独特的方法,分块并行Transformer(BPT),它利用自注意和前馈网络融合的分块计算来最大限度地降低内存成本。通过处理较长的输入序列,同时保持内存效率,BPT使训练序列比普通Transformers长32倍,比以前的内存高效方法长4倍。对语言建模和强化学习任务的大量实验证明了BPT在减少记忆需求和提高性能方面的有效性。

1 引言

2 Transformer的内存瓶颈

3 大型上下文模型的分块并行

4 内存消耗

5 设置

6 结果

7 相关工作

8 结论

总之,我们提出了一种分块并行化方法来降低Transformers的内存需求,Transformers是最先进的NLP模型的主干。我们的方法能够处理较长的输入序列,同时保持或提高性能。通过大量的实验,我们证明了它的有效性,实现了比高效内存Transformer高出4倍的内存减少。我们的贡献包括在大型Trans

已下架不支持订阅

Introduction During the past year, we have seen the rapid development of video generation models with the release of several open-source models, such as HunyuanVideo, CogVideoX and Mochi. It is very exciting to see that open source video models are going to beat closed source. However, the inference speed of these models is still a bottleneck for real-time applications and deployment. In this article, we will use ParaAttention, a library implements Context Parallelism and First Block Cache, as well as other techniques like torch.compile and FP8 Dynamic Quantization, to achieve the fastest inference speed for HunyuanVideo. If you want to speed up other models like CogVideoX, Mochi or FLUX, you can also follow the same steps in this article. We set up our experiments on NVIDIA L20 GPUs, which only have PCIe support. If you have NVIDIA A100 or H100 GPUs with NVLink support, you can achieve a better speedup with context parallelism, especially when the number of GPUs is large. HunyuanVideo Inference with diffusers Like many other generative AI models, HunyuanVideo has its official code repository and is supported by other frameworks like diffusers and ComfyUI. In this article, we will focus on optimizing the inference speed of HunyuanVideo with diffusers. To use HunyuanVideo with diffusers, we need to install its latest version: pip3 install -U diffusers Then, we can load the model and generate video frames with the following code: import time import torch from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel from diffusers.utils import export_to_video model_id = "tencent/HunyuanVideo" transformer = HunyuanVideoTransformer3DModel.from_pretrained( model_id, subfolder="transformer", torch_dtype=torch.bfloat16, revision="refs/pr/18", ) pipe = HunyuanVideoPipeline.from_pretrained( model_id, transformer=transformer, torch_dtype=torch.float16, revision="refs/pr/18", ).to("cuda") pipe.vae.enable_tiling() begin = time.time() output = pipe( prompt="A cat walks on the grass, realistic", height=720, width=1280, num_frames=129, num_inference_steps=30, ).frames[0] end = time.time() print(f"Time: {end - begin:.2f}s") print("Saving video to hunyuan_video.mp4") export_to_video(output, "hunyuan_video.mp4", fps=15) However, most people will experience OOM (Out of Memory) errors when running the above code. This is because the HunyuanVideo transformer model is relatively large and it has a quite large text encoder. Besides, HunyuanVideo requires a variable length of text conditions and the diffusers library implements this feature with a attn_mask in scaled_dot_product_attention. The size of attn_mask is proportional to the square of the input sequence length, which is crazy when we increase the resolution and the number of frames of the inference! Luckily, we can use ParaAttention to solve this problem. In ParaAttention, we patch the original implementation in diffusers to cut the text conditions before calling scaled_dot_product_attention. We implement this in our apply_cache_on_pipe function so we can call it after loading the model: pip3 install -U para-attn pipe = HunyuanVideoPipeline.from_pretrained( model_id, transformer=transformer, torch_dtype=torch.float16, revision="refs/pr/18", ).to("cuda") from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe apply_cache_on_pipe(pipe, residual_diff_threshold=0.0) We pass residual_diff_threshold=0.0 to apply_cache_on_pipe to disable the cache mechanism now, because we will enable it later. Here, we only want it to cut the text conditions to avoid OOM errors. If you still experience OOM errors, you can try calling pipe.enable_model_cpu_offload or pipe.enable_sequential_cpu_offload after calling apply_cache_on_pipe. This is our baseline. On one single NVIDIA L20 GPU, we can generate 129 frames with 720p resolution in 30 inference steps in 3675.71 seconds. Apply First Block Cache on HunyuanVideo By caching the output of the transformer blocks in the transformer model and resuing them in the next inference steps, we can reduce the computation cost and make the inference faster. However, it is hard to decide when to reuse the cache to ensure the quality of the generated video. Recently, TeaCache suggests that we can use the timestep embedding to approximate the difference among model outputs. And AdaCache also shows that caching can contribute grant significant inference speedups without sacrificing the generation quality, across multiple video DiT baselines. However, TeaCache is still a bit complex as it needs a rescaling strategy to ensure the accuracy of the cache. In ParaAttention, we find that we can directly use the residual difference of the first transformer block output to approximate the difference among model outputs. When the difference is small enough, we can reuse the residual difference of previous inference steps, meaning that we in fact skip this denoising step. This has been proved to be effective in our experiments and we can achieve an up to 2x speedup on HunyuanVideo inference with very good quality. Cache in Diffusion Transformer How AdaCache works, First Block Cache is a variant of it To apply the first block cache on HunyuanVideo, we can call apply_cache_on_pipe with residual_diff_threshold=0.06, which is the default value for HunyuanVideo. apply_cache_on_pipe(pipe, residual_diff_threshold=0.06) HunyuanVideo without FBCache hunyuan_video_original.mp4 HunyuanVideo with FBCache hunyuan_video_fbc.mp4 We observe that the first block cache is very effective in speeding up the inference, and maintaining nearly no quality loss in the generated video. Now, on one single NVIDIA L20 GPU, we can generate 129 frames with 720p resolution in 30 inference steps in 2271.06 seconds. This is a 1.62x speedup compared to the baseline. Quantize the model into FP8 To further speed up the inference and reduce memory usage, we can quantize the model into FP8 with dynamic quantization. We must quantize both the activation and weight of the transformer model to utilize the 8-bit Tensor Cores on NVIDIA GPUs. Here, we use float8_weight_only and float8_dynamic_activation_float8_weightto quantize the text encoder and transformer model respectively. The default quantization method is per tensor quantization. If your GPU supports row-wise quantization, you can also try it for better accuracy. diffusers-torchao provides a really good tutorial on how to quantize models in diffusers and achieve a good speedup. Here, we simply install the latest torchao that is capable of quantizing HunyuanVideo. If you are not familiar with torchao quantization, you can refer to this documentation. pip3 install -U torch torchao We also need to pass the model to torch.compile to gain actual speedup. torch.compile with mode="max-autotune-no-cudagraphs" or mode="max-autotune" can help us to achieve the best performance by generating and selecting the best kernel for the model inference. The compilation process could take a long time, but it is worth it. If you are not familiar with torch.compile, you can refer to the official tutorial. In this example, we only quantize the transformer model, but you can also quantize the text encoder to reduce more memory usage. We also need to notice that the actually compilation process is done on the first time the model is called, so we need to warm up the model to measure the speedup correctly. Note: we find that dynamic quantization can significantly change the distribution of the model output, so you might need to tweak the residual_diff_threshold to a larger value to make it take effect. import time import torch from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel from diffusers.utils import export_to_video model_id = "tencent/HunyuanVideo" transformer = HunyuanVideoTransformer3DModel.from_pretrained( model_id, subfolder="transformer", torch_dtype=torch.bfloat16, revision="refs/pr/18", ) pipe = HunyuanVideoPipeline.from_pretrained( model_id, transformer=transformer, torch_dtype=torch.float16, revision="refs/pr/18", ).to("cuda") from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe apply_cache_on_pipe(pipe) from torchao.quantization import quantize_, float8_dynamic_activation_float8_weight, float8_weight_only quantize_(pipe.text_encoder, float8_weight_only()) quantize_(pipe.transformer, float8_dynamic_activation_float8_weight()) pipe.transformer = torch.compile( pipe.transformer, mode="max-autotune-no-cudagraphs", ) # Enable memory savings pipe.vae.enable_tiling() # pipe.enable_model_cpu_offload() # pipe.enable_sequential_cpu_offload() for i in range(2): begin = time.time() output = pipe( prompt="A cat walks on the grass, realistic", height=720, width=1280, num_frames=129, num_inference_steps=1 if i == 0 else 30, ).frames[0] end = time.time() if i == 0: print(f"Warm up time: {end - begin:.2f}s") else: print(f"Time: {end - begin:.2f}s") print("Saving video to hunyuan_video.mp4") export_to_video(output, "hunyuan_video.mp4", fps=15) The NVIDIA L20 GPU only has 48GB memory and could face OOM errors after compiling the model and not calling enable_model_cpu_offload, because the HunyuanVideo has very large activation tensors when running with high resolution and large number of frames. So here we skip measuring the speedup with quantization and compilation on one single NVIDIA L20 GPU and choose to use context parallelism to release the memory pressure. If you want to run HunyuanVideo with torch.compile on GPUs with less than 80GB memory, you can try reducing the resolution and the number of frames to avoid OOM errors. Due to the fact that large video generation models usually have performance bottleneck on the attention computation rather than the fully connected layers, we don't observe a significant speedup with quantization and compilation. However, models like FLUX and SD3 can benefit a lot from quantization and compilation, it is suggested to try it for these models. Parallelize the inference with Context Parallelism A lot faster than before, right? But we are not satisfied with the speedup we have achieved so far. If we want to accelerate the inference further, we can use context parallelism to parallelize the inference. Libraries like xDit and our ParaAttention provide ways to scale up the inference with multiple GPUs. In ParaAttention, we design our API in a compositional way so that we can combine context parallelism with first block cache and dynamic quantization all together. We provide very detailed instructions and examples of how to scale up the inference with multiple GPUs in our ParaAttention repository. Users can easily launch the inference with multiple GPUs by calling torchrun. If there is a need to make the inference process persistent and serviceable, it is suggested to use torch.multiprocessing to write your own inference processor, which can eliminate the overhead of launching the process and loading and recompiling the model. Below is our ultimate code to achieve the fastest HunyuanVideo inference: import time import torch import torch.distributed as dist from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel from diffusers.utils import export_to_video dist.init_process_group() torch.cuda.set_device(dist.get_rank()) # [rank1]: RuntimeError: Expected mha_graph->execute(handle, variant_pack, workspace_ptr.get()).is_good() to be true, but got false. (Could this error message be improved? If so, please report an enhancement request to PyTorch.) # torch.backends.cuda.enable_cudnn_sdp(False) model_id = "tencent/HunyuanVideo" transformer = HunyuanVideoTransformer3DModel.from_pretrained( model_id, subfolder="transformer", torch_dtype=torch.bfloat16, revision="refs/pr/18", ) pipe = HunyuanVideoPipeline.from_pretrained( model_id, transformer=transformer, torch_dtype=torch.float16, revision="refs/pr/18", ).to("cuda") from para_attn.context_parallel import init_context_parallel_mesh from para_attn.context_parallel.diffusers_adapters import parallelize_pipe from para_attn.parallel_vae.diffusers_adapters import parallelize_vae mesh = init_context_parallel_mesh( pipe.device.type, ) parallelize_pipe( pipe, mesh=mesh, ) parallelize_vae(pipe.vae, mesh=mesh._flatten()) from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe apply_cache_on_pipe(pipe) # from torchao.quantization import quantize_, float8_dynamic_activation_float8_weight, float8_weight_only # # torch._inductor.config.reorder_for_compute_comm_overlap = True # # quantize_(pipe.text_encoder, float8_weight_only()) # quantize_(pipe.transformer, float8_dynamic_activation_float8_weight()) # pipe.transformer = torch.compile( # pipe.transformer, mode="max-autotune-no-cudagraphs", # ) # Enable memory savings pipe.vae.enable_tiling() # pipe.enable_model_cpu_offload(gpu_id=dist.get_rank()) # pipe.enable_sequential_cpu_offload(gpu_id=dist.get_rank()) for i in range(2): begin = time.time() output = pipe( prompt="A cat walks on the grass, realistic", height=720, width=1280, num_frames=129, num_inference_steps=1 if i == 0 else 30, output_type="pil" if dist.get_rank() == 0 else "pt", ).frames[0] end = time.time() if dist.get_rank() == 0: if i == 0: print(f"Warm up time: {end - begin:.2f}s") else: print(f"Time: {end - begin:.2f}s") if dist.get_rank() == 0: print("Saving video to hunyuan_video.mp4") export_to_video(output, "hunyuan_video.mp4", fps=15) dist.destroy_process_group() We save the above code to run_hunyuan_video.py and run it with torchrun: torchrun --nproc_per_node=8 run_hunyuan_video.py With 8 NVIDIA L20 GPUs, we can generate 129 frames with 720p resolution in 30 inference steps in 649.23 seconds. This is a 5.66x speedup compared to the baseline! 翻译
09-24
### 块状并行变压器的工作原理 块状并行变压器(Blockwise Parallel Transformer)是一种优化技术,旨在通过分块处理来加速变压器模型中的计算过程。这种架构允许将输入序列分割成多个较小的子块,在这些子块上独立执行注意力机制运算[^1]。 具体来说,对于长度为N的输入序列X=[x_1,x_2,...,x_N],可以将其划分为若干个不重叠的小片段{B_i},其中i表示第i个block。每个block内部的数据会按照常规Transformer的方式进行编码操作;而在不同blocks之间,则采用稀疏连接策略减少不必要的全局依赖关系建模开销。 ### 实现方式 为了实现这一目标,通常会在构建自定义层时引入特定参数控制如何划分以及组合各个部分的结果: ```python class BlockParallelAttention(nn.Module): def __init__(self, d_model, num_heads, block_size=64): super().__init__() self.block_size = block_size # 定义标准多头注意机制组件 self.q_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) def forward(self, x): Q = self.q_linear(x).view(-1, self.num_heads, *x.shape[-2:]) # (batch_size*num_blocks), heads, seq_len/block_size, dim_head K = self.k_linear(x).view_as(Q) V = self.v_linear(x).view_as(Q) scores = torch.einsum('bhid,bhjd->bhij', Q, K) / math.sqrt(K.size(-1)) mask = generate_causal_mask(scores.shape[-2:], device=x.device) masked_scores = scores.masked_fill(mask == False, float('-inf')) attn_weights = F.softmax(masked_scores, dim=-1) output = torch.einsum('bhij,bhjd->bhid', attn_weights, V).reshape(*x.shape[:-1], -1) return output ``` 上述代码展示了简化版的块平行化注意力模块设计思路,实际应用中可能还需要考虑更多细节如位置偏置项加入等。 ### 应用场景 该类结构特别适合于长文本理解和生成任务,因为能够有效缓解传统全连通型Transformers面对极长序列时存在的内存占用过高问题。此外,在自然语言推理、机器翻译等领域也有广泛应用前景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值