DLTK 用于医学图像分析的深度学习工具箱

DLTK是一款基于TensorFlow的神经网络工具包,采用模块化设计,受到Sonnet的启发。它专注于图像分析应用,特别是医学成像领域,旨在促进快速原型设计并确保研究的可重复性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Deep Learning Toolkit (DLTK)

Gitter

DLTK is a neural networks toolkit written in python, on top ofTensorflow. Its modular architecture is closely inspired bysonnetand it was developed to enable fast prototyping and ensure reproducibility in image analysis applications, with a particular focus on medical imaging. Its goal is to provide the community with state of the art methods and models and to accelerate research in this exciting field.

Documentation

DLTK API and user guides can be foundhere

Installation

  1. Install CUDA with cuDNN and add the path to ~/.bashrc:
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:MY_CUDA_PATH/lib64; export LD_LIBRARY_PATH
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:MY_CUDA_PATHextras/CUPTI/lib64; export LD_LIBRARY_PATH
PATH=$PATH:MY_CUDA_PATH/bin; export PATH
CUDA_HOME=MY_CUDA_PATH; export CUDA_HOME
  1. Setup a virtual environment and activate it:
virtualenv venv_tf1.1
source venv_tf1.1/bin/activate
  1. Install all DLTK dependencies (including tensorflow) via pip:
cd $DLTK_SRC
pip install -e .

Start playing

  1. Start a notebook server with
jupyter notebook --ip=* --port $MY_PORT
  1. navigate to examples and run a tutorial.ipynb notebook

Road map

Over the course of the next months we will add more content to DLTK. This road map outlines the immediate plans for what you will be seeing in DLTK soon:

  • Core:

    • Losses: Dice loss, frequency reweighted losses, adversial training
    • Normalisation: layer norm, weight norm
  • Models:

    • deepmedic
    • densenet
    • VGG
    • Super-resolution nets
  • Other:

    • Augmentation via elastic deformations
    • Sampling with fixed class frequencies
    • Stand-alone deploy scripts

Core team

@mrajchl@pawni@sk1712@mauinz

License

See license.md

Acknowledgements

We would like to thankNVIDIA GPU Computingfor providing us with hardware for our research.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值