ICCV 2013的人脸特征点检评测及代码

本文介绍ICCV2013举办的人脸特征点检测挑战赛详情,包括使用的数据集、评估标准及参与流程。该挑战旨在推动计算机视觉领域中人脸关键点检测技术的发展。
ICCV 2013的人脸特征点检评测及Workshop 网址: http://ibug.doc.ic.ac.uk/resources ,可以找到很多facial landmark detection的state-of-the-art的代码(可执行)及文档资料。

Datasets
Code


300 Faces in-the-Wild Challenge (300-W), ICCV 2013

Latest News!

We provide the  bounding box initialisations , as produced by our in-house detector, for each database of the training procedure. Additionaly the bounding boxes of the ground truth are given.

300-W
The first Automatic Facial Landmark Detection in-the-Wild Challenge (300-W 2013) to be held in conjunction with International Conference on Computer Vision 2013, Sydney, Australia.

Organisers
Georgios Tzimiropoulos, University of Lincoln, UK
Stefanos Zafeiriou, Imperial College London, UK
Maja Pantic, Imperial College London, UK

Scope
Automatic facial landmark detection is a longstanding problem in computer vision, and 300-W Challenge is the first event of its kind organized exclusively to benchmark the efforts in the field. The particular focus is on facial landmark detection in real-world datasets of facial images captured in-the-wild. The results of the Challenge will be presented at the 300-W Faces in-the-Wild Workshop to be held in conjunction with ICCV 2013.
A special issue of Image and Vision Computing Journal will present the best performing methods and summarize the results of the Challenge.

The 300-W Challenge
Landmark annotations (following the Multi-PIE [1] 68 points mark-up, please see Fig. 1) for four popular data sets are available from http://ibug.doc.ic.ac.uk/resources/300-W . All participants in the Challenge will be able to train their algorithms using these data. Performance evaluation will be carried out on 300-W test set, using the same Multi-PIE mark-up, and the same face-bounding box initialization.

figure_1_68.jpg
figure_1_51.jpg

Figure 1: The 68 and 51 points mark-up used for our annotations.

Training
The datasets LFPW [2], AFW [3], HELEN [4], and XM2VTS [5] have been re-annotated using the mark-up of Fig 1. We provide additional annotations for another 135 images in difficult poses and expressions (IBUG training set). Annotations have the same name as the corresponding images. For LFPW, AFW, HELEN,  and IBUG  datasets we also provide the images. The remaining image databases can be downloaded from the authors’ websites. All annotations can be downloaded at:
Participants are strongly encouraged to train their algorithms using these training data. Should you use any of the provided annotations please cite [6] and the paper presenting the corresponding database.
Please note that the re-annotated data for this challenge are saved in the matlab convention of 1 being
the first index, i.e. the coordinates of the top left pixel in an image are x=1, y=1.


Testing
Participants will have their algorithms tested on a newly collected data set with 2x300 (300 indoor and 300 outdoor) face images collected in the wild (300-W test set). Sample images are shown in Fig 2 and Fig 3.  

figure_2.jpg
figure_3.jpg
Figure 2: Outdoor.
Figure 3: Indoor.

300-W test set is aimed to test the ability of current systems to handle unseen subjects, independently of variations in pose, expression, illumination, background, occlusion, and image quality.
Participants should send binaries  with their trained algorithms to the organisers, who will run each algorithm on the 300-W test set using the same bounding box initialization. This bounding box is provided by our in-house face detector. The face region that our detector was trained on is defined by the bounding box as computed by the landmark annotations (please see Fig. 4).

   figure_4_n_2.jpg

Figure 4: Face region (bounding box) that our face detector was trained on.


Examples of bounding box initialisations along with the ground-truth bounding boxes are show in Fig. 5. The initialisations for the whole LPFW test-set can be downloaded from: http://ibug.doc.ic.ac.uk/media/uploads/competitions/images_testset_lfpw_inits.zip .

figure_5_a.jpg
figure_5_b.jpg
Figure 5: Examples of bounding box initialisations for images from the test set of LFPW.

Participants should expect that initialisations for the 300-W test set are of similar accuracy.
Each binary should accept two inputs: input image (RGB with .png extension) and the coordinates of the bounding box. Bounding box should be a 4x1 vector [xmin, ymin, xmax, ymax] (please see Fig. 6). The output of the binary should be a 68 x 2 matrix with the detected landmarks. This matrix should be saved in the same format (.pts) and ordering as the one of the provided annotations.

   figure_6.jpg

Figure 6: Coordinates of the bounding box (the coordinates of the top left pixel are x=1, y=1).


Facial landmark detection performance will be assessed on both the 68 points mark-up of Fig 1 and the 51 points which correspond to the points without border (please see Fig1). The average point-to-point Euclidean error normalized by the inter-ocular distance (measured as the Euclidean distance between the outer corners of the eyes) will be used as the error measure. Matlab code for calculating the error can be downloaded from http://ibug.doc.ic.ac.uk/media/uploads/competitions/compute_error.m . Finally, the cumulative curve corresponding to the percentage of test images for which the error was less than a specific value will be produced. Additionally, fitting times will be recorded. These results will be returned to the participants for inclusion in their papers.

The binaries submitted for the competition will be handled confidentially.   They will be used only for the scope of the competition and will be erased after the completion. The binaries should be complied in a 64bit machine and dependencies to publicly available vision repositories (such as Open CV) should be explicitly stated in the document that accompanies the binary

Papers
Challenge participants should submit a paper to the 300-W Workshop, which summarizes the methodology and the achieved performance of their algorithm. Submissions should adhere to the main ICCV 2013 proceedings style, and have a maximum length of 8 pages. The workshop papers will be published in the ICCV 2013 proceedings.

Important Dates 

  • Binaries submission deadline: September 7, 2013
  • Paper submission deadline: September 15, 2013
  • Author Notification: October 7, 2013
  • Camera-Ready Papers: November 13, 2013

Contact
Dr. Georgios Tzimiropoulos
gtzimiropoulos@lincoln.ac.uk ,   gt204@imperial.ac.uk
Intelligent Behaviour Understanding Group (iBUG)

References 
[1] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker.Multi-pie. Image and Vision Computing, 28(5):807–813, 2010.
[2] Belhumeur, P., Jacobs, D., Kriegman, D., Kumar, N.. ‘Localizing parts of faces using a consensus of exemplars’.  In Computer Vision and Pattern Recognition, CVPR. (2011).
[3] X. Zhu, D. Ramanan. ‘Face detection, pose estimation and landmark localization in the wild’, Computer Vision and Pattern Recognition (CVPR) Providence, Rhode Island, June 2012.
[4] Vuong Le, Jonathan Brandt, Zhe Lin, Lubomir Boudev, Thomas S. Huang. ‘Interactive Facial Feature Localization’, ECCV2012.
[5] Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G. ‘Xm2vtsdb: The ex- tended m2vts database’. In: 2nd international conference on audio and video-based biometric person authentication. Volume 964. (1999).
[6] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou and Maja Pantic. ‘A semi-automatic methodology for facial landmark annotation’, IEEE Int’l Conf. Computer Vision and Pattern Recognition (CVPR-W’13), 5th Workshop on Analysis and Modeling of Faces and Gestures (AMFG2013). Portland Oregon, USA, June 2013 (accepted for publication).
标题中的"EEG脑电图数据(DEAP和MAHNOB-HC)"指的是两种广泛用于研究情绪识别和人机交互的公开数据集。EEG,全称Electroencephalogram,是通过在头皮上放置电极记录大脑电活动的技术。DEAP(Dataset for Emotion Analysis using Electroencephalography)和MAHNOB-HCI(Mahnoob Human-Computer Interaction)这两个数据集都是为了研究情绪状态与脑电图信号之间的关联。 DEAP数据集由英国朴茨茅斯大学的研究团队创建,主要用于情绪识别。它包含了32个参与者在观看40段不同情绪激发视频片段时的EEG数据。每段视频持续约60秒,涵盖了愤怒、快乐、悲伤和冷静四种基本情绪。除了EEG数据,该数据集还包括心率、血流、皮肤导电性和呼吸等生理信号,以及参与者对每个视频的情绪评价。这些多模态数据有助于研究者构建更准确的情绪识别模型。 MAHNOB-HCI数据集则是由瑞典斯德哥尔摩皇家理工学院的研究人员开发,专注于人机交互。它包含27名参与者在执行各种计算机交互任务时的EEG数据,比如玩视频游戏、浏览网页等。数据集旨在探索用户的认知负荷、注意力和兴趣水平等心理状态如何影响人机交互体验。与DEAP不同,MAHNOB-HCI主要关注日常交互情境,而非特定情绪刺激。 在"文章 Tensorflow:EEG上CNN的一次实验"中,作者可能使用了TensorFlow,这是一个强大的开源机器学习框架,来构建卷积神经网络(CNN)模型。CNN在处理图像和时间序列数据方面表现出色,因此很适合分析EEG信号的时空模式。通过训练CNN模型,研究者可以识别出EEG信号中的特征,进一步用于情绪分类或其他相关应用。 在处理EEG数据时,通常会进行预处理步骤,包括滤波去除噪声,提取特征如功率谱密度或自相关函数,以及标准化数据以提高模型的训练效果。然后,将EEG信号切分为小的时间窗口,每个窗口作为一个样本输入到CNN模型。模型的架构可能包括卷积层、池化层和全连接层,以捕捉不同尺度的特征,并最终进行分类。 总结来说,这两个数据集DEAP和MAHNOB-HCI为研究EEG信号与情绪、认知状态的关系提供了宝贵的资源。结合TensorFlow和CNN技术,可以实现高效且准确的EEG信号分析,推动情绪识别和人机交互领域的进步。对于深入理解大脑活动以及开发智能辅助系统具有重要意义
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值