主要贡献点

we propose 3D-FM GAN, a novel conditional GAN framework designed specifically for 3D-controllable Face Manipulation, and does not require any tuning after the end-to-end learning phase.
基于conditional GAN做人脸的操作
A StyleGAN conditional generator then takes in both the original image and the manipulated face rendering to synthesize the edited face.
引入了StyleGAN,结合了真实照片和渲染模型的输入。
引入了两种训练策略,既保留人脸的identity,又保留了可编辑性
Moreover, we develop two essential training strategies, reconstruction and disentangled training, to help our model gain abilities of identity preservation and 3D editability.
又引入了multiplicative co-modulation的架构平衡两者
As we find an interesting trade-off between identity and editability in the network structure and the simple encoding strategy is sub-optimal, we propose a novel multiplicative co-modulation architecture for our framework.
方法
整体流程

the generator G, the face reconstruction network FR, and the renderer Rd.
数据集

FFHQ. FFHQ [23] is a human face photo dataset, where most identities only have one corresponding image. For each of the training image P, we extract its render counterpart by R = Rd(FR(P)) to form the (P, R) pair.
Synthetic Dataset. We also require a dataset where each identity has multiple images with various attributes of expression, pose, and illumination. Such a dataset is crucial for model to perform learning for editing. While this kind of high-quality dataset is not publicly available, we leverage DiscoFaceGAN [10], Gd, to synthesize one as follows.
训练策略



分离训练使用了content loss,强调了生成和输入的condition的一致性。

消融实验表明使用两种策略可以更好保持脸部一致,又保留脸部的可编辑。

架构


encoder包含了三种隐空间
分离式地调制,把照片和渲染分别输入到不同的encoder当中

混合式调制,把照片和渲染输入到W,W+encoder当中,用元素间乘法来融合


实验
实验指标

架构的比较


三个encoder的co-modulation效果最好
可控的人脸合成效果
属性可分离的人脸编辑

基于其他图像的属性迁移

脸部驱动

肖像画的编辑

其他方法的比较
指标的比较

可视化比较
DiscoFaceGAN

其他GAN模型

人脸转正& relighting

存在的问题
无法控制头发和皱纹
由于3DMM参数估计不准确造成的差异
合成数据集引入的一些bias
文章提出了3D-FMGAN,一个专为3D可控人脸操作设计的新型条件GAN框架。该框架无需端到端学习后的微调,结合了StyleGAN和两种训练策略,以保留身份信息并保持编辑性。通过分离训练和解纠缠训练,模型能同时实现身份保护和3D编辑能力。实验表明,采用多乘法共调制架构的三个编码器在性能上最佳,支持包括人脸属性编辑、肖像画编辑等多种应用。
1332

被折叠的 条评论
为什么被折叠?



