UVa 242 Stamps and Envelope Size

本文深入探讨了邮票与信封尺寸问题,并通过算法提供了解决方案。通过输入信封最大容纳邮票数和邮票面额集合,输出了最大化覆盖而无间隙的邮票组合及其总金额。

 Stamps and Envelope Size 

Philatelists have collected stamps since long before postal workers were disgruntled. An excess of stamps may be bad news to a country's postal service, but good news to those that collect the excess stamps. The postal service works to minimize the number of stamps needed to provide seamless postage coverage. To this end you have been asked to write a program to assist the postal service.

Envelope size restricts the number of stamps that can be used on one envelope. For example, if 1 cent and 3 cent stamps are available and an envelope can accommodate 5 stamps, all postage from 1 to 13 cents can be ``covered":

tabular21

Although five 3 cent stamps yields an envelope with 15 cents postage, it is not possible to cover an envelope with 14 cents of stamps using at most five 1 and 3 cent stamps. Since the postal service wants maximal coverage without gaps, the maximal coverage is 13 cents.

Input

The first line of each data set contains the integer S, representing the maximum of stamps that an envelope can accommodate. The second line contains the integer N, representing the number of sets of stamp denominations in the data set. Each of the next N lines contains a set of stamp denominations. The first integer on each line is the number of denominations in the set, followed by a list of stamp denominations, in order from smallest to largest, with each denomination separated from the others by one or more spaces. There will be at most S denominations on each of the N lines. The maximum value of S is 10, the largest stamp denomination is 100, the maximum value of N is 10.

The input is terminated by a data set beginning with zero (S is zero).

Output

Output one line for each data set giving the maximal no-gap coverage followed by the stamp denominations that yield that coverage in the following format:

max coverage = <value> : <denominations>

If more than one set of denominations in a set yields the same maximal no-gap coverage, the set with the fewest number of denominations should be printed (this saves on stamp printing costs). If two sets with the same number of denominations yield the same maximal no-gap coverage, then the set with the lower maximum stamp denomination should be printed. For example, if five stamps fit on an envelope, then stamp sets of 1, 4, 12, 21 and 1, 5, 12, 28 both yield maximal no-gap coverage of 71 cents. The first set would be printed because both sets have the same number of denominations but the first set's largest denomination (21) is lower than that of the second set (28). If multiple sets in a sequence yield the same maximal no-gap coverage, have the same number of denominations, and have equal largest denominations, then print the set with the lewer second-maximum stamp denomination, and so on.

Sample Input

5
2
4 1 4 12 21
4 1 5 12 28
10
2
5 1 7 16 31 88
5 1 15 52 67 99
6
2
3 1 5 8
4 1 5 7 8
0

Sample Output

max coverage =  71 :  1  4 12 21
max coverage = 409 :  1  7 16 31 88
max coverage =  48 :  1  5  7  8

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;


// record[i][j][k]代表是否可以用第i,i+1,...,n面额邮票,在不超过j张情况下,得到总额为k
int record[15][15][1100];
// d[i]表示凑出面值i需要的邮票数量
int d[15][1100];

// 面额组合情况结构体
typedef struct node
{
	int stamp[15];	// 邮票面额
	int num;	// 邮票张数
	int max_cov;	// 能形成的最大覆盖
	
	bool operator < (const struct node& x) const
	{
		if(max_cov > x.max_cov)
			return true;
		else if(max_cov == x.max_cov)
		{
			if(num < x.num)
				return true;
			else if(num == x.num)
			{	
				for(int i = num-1; i >= 0; i--)
				{
					if(stamp[i] > x.stamp[i])
						return false;
					else if(stamp[i] < x.stamp[i])
						return true;
				}
			}
			else
				return false;
		}
		else
			return false;
	}			
}node;

// 面额情况数组
node array[15];

// 最多能用的邮票张数
int max_num;

// 面额情况个数
int array_len;


// 代表现在需计算的是array[t]
int t;

int get_result(int i, int j, int k);

int main()
{
	while(scanf("%d", &max_num) == 1 && (max_num != 0))
	{
		scanf("%d", &array_len);

//		memset(d, -1, sizeof(d));
	
		// 读入所有情况
		for(t = 0; t < array_len; t++)
		{
			memset(record, -1, sizeof(record));
//			memset(d, -1, sizeof(d));

			scanf("%d", &array[t].num);
/*			for(int j = 1; j <= array[t].num; j++)
				scanf("%d", &array[t].stamp[j]);	
*/
			for(int j = 0; j < array[t].num; j++)
                                scanf("%d", &array[t].stamp[j]);
			// 计算结果
			int i = 0;
//			d[t][0] = 0;
			for(i = 1; ; i++)
			{

				if(!get_result(0, max_num, i))
					break;

/*				
				if(d[t][i] == -1 || d[t][i] > max_num)
					break;
				// 更新其他的状态
				for(int j = 0; j < array[t].num; j++)
				{
					if(i+array[i].stamp[j] >= 1100)
						continue;
					if(d[t][i+array[t].stamp[j]] == -1)
						d[t][i+array[t].stamp[j]] = d[t][i] + 1;
					else if(d[t][i+array[t].stamp[j]] > d[t][i] + 1)
						d[t][i+array[t].stamp[j]] = d[t][i] + 1;				
				}		
*/			}
			array[t].max_cov = i-1;	
		}
/*
		sort(array, array+array_len);
		printf("max coverage =%4d :", array[0].max_cov);
		for(int i = 0; i < array[0].num; i++)
			printf("%3d", array[0].stamp[i]);
		printf("\n");
*/

//		int max_c = array[0].max_cov;
		int place = 0;
		for(int i = 1; i < array_len; i++)	
		{
			if(array[i] < array[place])
				place = i;

		}

		printf("max coverage =%4d :", array[place].max_cov);
                for(int i = 0; i < array[place].num; i++)
                        printf("%3d", array[place].stamp[i]);
                printf("\n");
	}
	return 0;	
}


// 计算record[i][j][k]代表是否可以用第i,i+1,...,n面额邮票,在不超过j张情况下,得到总额为k
int get_result(int i, int j, int k)
{
	if(record[i][j][k] != -1)
		return record[i][j][k];

	// 如果总额为0
	if(k == 0)
	{
		record[i][j][k] = 1;
		return record[i][j][k];
	}
	// 如果只有一种面额可用
	if(i == array[t].num -1)
	{
		if(k % array[t].stamp[i] == 0 && k / array[t].stamp[i] <= j)
			record[i][j][k] = 1;
		else
			record[i][j][k] = 0;
		return record[i][j][k];	
	}		
	// 如果只有一张邮票可用
	if(j == 1)
	{
		for(int a = i; a < array[t].num; a++)
		{
			if(array[t].stamp[a] == k)
			{
				record[i][j][k] = 1;
				return record[i][j][k];
			}
		}		
		record[i][j][k] = 0;
		return record[i][j][k];
	}
	// 如果没有邮票可用
	if(j == 0)
	{
		record[i][j][k] = 0;
		return record[i][j][k];
	}

	// 否则,实验用第i种面额的所有情况
	int ans = 0;
	for(int use = 0; use <= j; use++)
	{
		if(k-array[t].stamp[i]*use < 0)
			break;
		int r = get_result(i+1, j-use, k-array[t].stamp[i]*use);
		if(r == 1)
		{
			ans = 1;
			break;
		}	
	}		

	record[i][j][k] = ans;
	return record[i][j][k];	
	
}
/*
max coverage =  71 :  1  4 12 21
max coverage =  409 :  1  7 16 31 88
max coverage =  48 :  1  5  7  8

max coverage =  71 :  1  4 12 21
max coverage = 409 :  1  7 16 31 88
max coverage =  48 :  1  5  7  8
max coverage =  71 :  1  4 12 21
max coverage = 409 :  1  7 16 31 88
max coverage =  48 :  1  5  7  8

max coverage =  71 :  1  4 12 21
max coverage = 409 :  1  7 16 31 88
max coverage =  48 :  1  5  7  8
*/



这题本身不难,不知为什么使用sort函数会runtime error, 不使用就可以AC. 以后再看
内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤波(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤波后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度与稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤波位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态转移与观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤波算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论与实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位与导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测与观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤波算法的研究与对比。
内容概要:文章围绕智能汽车新一代传感器的发展趋势,重点阐述了BEV(鸟瞰图视角)端到端感知融合架构如何成为智能驾驶感知系统的新范式。传统后融合与前融合方案因信息丢失或算力需求过高难以满足高阶智驾需求,而基于Transformer的BEV融合方案通过统一坐标系下的多源传感器特征融合,在保证感知精度的同时兼顾算力可行性,显著提升复杂场景下的鲁棒性与系统可靠性。此外,文章指出BEV模型落地面临大算力依赖与高数据成本的挑战,提出“数据采集-模型训练-算法迭代-数据反哺”的高效数据闭环体系,通过自动化标注与长尾数据反馈实现算法持续进化,降低对人工标注的依赖,提升数据利用效率。典型企业案例进一步验证了该路径的技术可行性与经济价值。; 适合人群:从事汽车电子、智能驾驶感知算法研发的工程师,以及关注自动驾驶技术趋势的产品经理和技术管理者;具备一定自动驾驶基础知识,希望深入了解BEV架构与数据闭环机制的专业人士。; 使用场景及目标:①理解BEV+Transformer为何成为当前感知融合的主流技术路线;②掌握数据闭环在BEV模型迭代中的关键作用及其工程实现逻辑;③为智能驾驶系统架构设计、传感器选型与算法优化提供决策参考; 阅读建议:本文侧重技术趋势分析与系统级思考,建议结合实际项目背景阅读,重点关注BEV融合逻辑与数据闭环构建方法,并可延伸研究相关企业在舱泊一体等场景的应用实践。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值