Histogram in Spark (1)

本文介绍如何在Spark中为RDD[String]创建直方图,通过使用聚合方法和自定义函数实现对字符串类型的频率计数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Spark’s DoubleRDDFunctions provide a histogram function for RDD[Double]. However there are no histogram function for RDD[String]. Here is a quick exercise for doing it. We will use immutable Map in this exercise.

Create a dummy RDD[String] and apply the aggregate method to calculate histogram

1
2
3
4
5
scala> val d=sc.parallelize((1 to 10).map(_ % 3).map("val"+_.toString))
scala> d.aggregate(Map[String,Int]())(
     | (m,c)=>m.updated(c,m.getOrElse(c,0)+1),
     | (m,n)=>(m /: n){case (map,(k,v))=>map.updated(k,v+map.getOrElse(k,0))}
     | )

The 2nd function of aggregate method is to merge 2 maps. We can actually define a Scala function

1
2
3
scala> def mapadd[T](m:Map[T,Int],n:Map[T,Int])={
     | (m /: n){case (map,(k,v))=>map.updated(k,v+map.getOrElse(k,0))}
     | }

It combine the histogram on the different partitions together

1
2
scala> mapadd(Map("a"->1,"b"->2),Map("a"->2,"c"->1))
res3: scala.collection.mutable.Map[String,Int] = Map(b -> 2, a -> 3, c -> 1)

Use mapadd we can rewrite the aggregate step

1
2
3
4
scala> d.aggregate(Map[String,Int]())(
     | (m,c)=>m.updated(c,m.getOrElse(c,0)+1),
     | mapadd(_,_)
     | )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值