Optimize map performamce with mapPartitions

本文介绍如何通过使用mapPartitions方法减少Spark任务中不必要的对象创建,从而显著提高处理速度。通过对比map方法,展示了如何利用mapPartitions降低资源消耗并缩短执行时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

As we can see in previous article "CSV Parser" we may need to create a new object for each record of an RDD as in

1
2
3
4
5
6
    def mLine(line:String)={
      val parser=new CSVParser('\t')
      parser.parseLine(line)
    }
...
    ...myRDD.map(mLine(_).size)...

The mLine function is used in the map method of an RDD. In this case the parser object is created each time for each record, although they are exactly the same thing.

Actually, whenever we need to apply some complicated operation on each record there is a high chance we need to create some helper objects within map. By combining mapPartition with Scala map, we can reduce the unnecessary new object creation. Let’s rewrite above example with mapPartitions:

1
2
3
4
5
6
    def pLines(lines:Iterator[String])={
      val parser=new CSVParser('\t')
      lines.map(parser.parseLine(_).size)
    }
...
    myRDD.mapPartitions(pLines)

On my single box test machine, execution time of the same task reduced from 65 seconds to 35 seconds. Surprisingly the opencsv parser with the mapPartitions optimization is significantly faster than map(_split('\t')).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值