系列文章目录
文章目录
在电子商务产品的跨模态检索中,电子商务图像和电子商务语言都有许多独特的特点。如图所示,一个电子商务产品图片通常只包含一个简单的场景,有一个或两个前景物体和一个普通的背景。同时,电子商务语言通常由一组元数据(标签实体)组成,包括产品名称/描述、品牌、类别、成分等。之前的工作,如FashionBERT 表明,时尚领域的跨模态检索需要更细粒度的特征,比如如短袖和圆领。
在电子商务中,单词标记经常会产生特殊的含义,而[10,38,72]中的预训练语言模型部分尽管有大规模的预训练语料库,但仍有偏见。例如,在预训练的CLIP模型中,实体“diesel”与概念“fuel”紧密相关,而在电子商务时尚领域中,“diesel”被标记为品牌实体。其他例子包括“canada goose(品牌)“、“golden goose(品牌)”、“top(类别)"等
介绍一下因果学习,和分布外的问题,根据应用场景的不同Causal learning 的最终目的是不同的,