55 循环神经网络 RNN 的实现_简洁实现_by《李沐:动手学深度学习v2》pytorch版

系列文章目录

例如:第一章 Python 机器学习入门之pandas的使用



循环神经网络的简洁实现

对了解循环神经网络的实现方式具有指导意义,但并不方便。
本节将展示如何使用深度学习框架的高级API提供的函数更有效地实现相同的语言模型。
我们仍然从读取时光机器数据集开始。

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

定义模型

高级API提供了循环神经网络的实现。
我们构造一个具有256个隐藏单元的单隐藏层的循环神经网络层rnn_layer
事实上,我们还没有讨论多层循环神经网络的意义(这将在之后博客中中介绍)。
现在仅需要将多层理解为一层循环神经网络的输出被用作下一层循环神经网络的输入就足够了。

num_hiddens = 256
rnn_layer = nn.RNN(len(vocab), num_hiddens)

我们(使用张量来初始化隐状态),它的形状是(隐藏层数,批量大小,隐藏单元数)。

state = torch.zeros((1, batch_size, num_hiddens))#这里的1先记住,以后会知道为什么框架是这样的
state.shape #torch.Size([1, 32, 256])

通过一个隐状态和一个输入,我们就可以用更新后的隐状态计算输出。
需要强调的是,rnn_layer的“输出”(Y)不涉及输出层的计算:它是指每个时间步的隐状态,这些隐状态可以用作后续输出层的输入。

X = torch.rand(size=(num_steps, batch_size, len(vocab)))
Y
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值