61 编码器-解码器架构_by《李沐:动手学深度学习v2》pytorch版

系列文章目录



引言

正如我们在上一节中所讨论的, 机器翻译是序列转换模型的一个核心问题, 其输入和输出都是长度可变的序列。 为了处理这种类型的输入和输出, 我们可以设计一个包含两个主要组件的架构: 第一个组件是一个编码器(encoder): 它接受一个长度可变的序列作为输入, 并将其转换为具有固定形状的编码状态,比如隐状态(RNN中)或者特征(CNN中)。 第二个组件是解码器(decoder): 它将固定形状的编码状态映射到长度可变的序列。 这被称为编码器-解码器(encoder-decoder)架构, 如下图所示。
在这里插入图片描述
我们以英语到法语的机器翻译为例: 给定一个英文的输入序列:“They”“are”“watching”“.”。 首先,这种“编码器-解码器”架构将长度可变的输入序列编码成一个“状态”, 然后对该状态进行解码, 一个词元接着一个词元地生成翻译后的序列作为输出: “Ils”“regordent”“.”。 由于“编码器-解码器”架构是形成后续章节中不同序列转换模型的基础, 因此本节将把这个架构转换为接口方便后面的代码实现。

重新考察CNN

我们可以认为下面CNN的流程就是下面做特征提取(编码器),上面做预测(解码器)。
编码器:将输入编程成中间表达形式(特征)。
解码器:将中间表示解码成输出。
在这里插入图片描述

重新考察RNN

在这里插入图片描述

总结

使用编码器-解码器架构的模型,编码器负责表示输入,解码器负责输出。

编码器

在编码器接口中,我们只指定长度可变的序列作为编码器的输入X。任何继承这个Encoder基类的模型将完成代码实现。

from torch import nn


class Encoder(nn.Module):
    """编码器-解码器架构的基本编码器接口"""
    def __init__(self, **kwargs):
        super
动手学深度学习》(第二)是由李沐等人编写的经典教材,全面介绍了深度学习的基础理论与实践方法。该书提供了基于PyTorch的代码实现本,便于读者在实际操作中掌握深度学习模型的构建和训练过程。 ### PyTorch教程概述 书中针对PyTorch框架的使用进行了详细讲解,内容涵盖了从环境搭建、张量操作到神经网络模型定义等关键环节。通过配套的代码示例,可以快速上手并理解如何利用PyTorch进行深度学习开发。例如,书中展示了如何使用`torch.nn`模块来构建线性层和激活函数组成的简单网络: ```python import torch from torch import nn net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1)) X = torch.rand(size=(2, 4)) output = net(X) ``` 此代码片段演示了创建一个包含两个全连接层和一个ReLU激活函数的序列模型,并对随机生成的数据执行前向传播计算[^4]。 ### 数据加载与处理 为了更好地进行模型训练,《动手学深度学习》还介绍了数据加载的方法。例如,在时间序列任务中,可以通过以下方式加载数据集: ```python from d2l import torch as d2l batch_size, num_steps = 32, 35 train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps) ``` 上述代码利用了D2L库提供的工具函数,能够高效地读取文本数据并将其转换为适合输入模型的形式[^3]。 ### 模型训练与优化 书中进一步探讨了如何配置损失函数和优化器以完成模型训练。常见的选择包括均方误差损失(MSELoss)以及Adam优化算法。具体实现如下: ```python criterion = nn.MSELoss() optimizer = torch.optim.Adam(net.parameters(), lr=0.001) for epoch in range(num_epochs): for X, y in train_loader: outputs = net(X) loss = criterion(outputs, y) optimizer.zero_grad() loss.backward() optimizer.step() ``` 这段代码展示了典型的训练循环结构,其中包含了前向传播计算损失、反向传播更新权重参数等步骤。 ### 实用技巧与注意事项 - **动态计算图**:PyTorch采用动态计算图机制,使得调试更加直观且灵活。 - **内存管理**:合理控制批量大小(batch size),避免GPU显存溢出。 - **设备迁移**:确保模型和数据位于相同的设备上(CPU/GPU)以提高效率。 ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值