题意:
公式g[n] = 3 * g[n-1] + g[n-2]
求: g(g(g(n))) % (10^9 + 7)
解法:
1、暴力求 g(n) % (10 ^ 9 + 7) 的循环节 —— 222222224LL
2、暴力求 g(n) % (222222224LL) 的循环节 —— 183120LL
3、正推, 求出答案。
代码:
/*
* =====================================================================================
*
* Author: KissBuaa.DS(AC)
* Company: BUAA-ACMICPC-Group
*
* =====================================================================================
*/
/*
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define LL long long
const LL modo = 222222224LL; //打表
LL a[3];
int main(){
freopen("mengzhu.txt","w",stdout);
a[0] = 0LL , a[1] = 1LL;
LL i = 2LL;
for( ; ; i= i + 1LL){
a[ i % 3 ] = (a[ (i + 1) % 3] + 3LL * a[ (i + 2 ) % 3])%modo;
if (a[ i % 3 ] == 1 && a[ (i+2) % 3] ==0) break;
}
cout<< i << endl;
}
222222224LL
183120LL
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
//#include <stdbool.h>
#include <math.h>
#define LL __int64
#define CLR(x) memset(x,0,sizeof(x))
#define typec LL
#define sqr(x) ((x)*(x))
#define abs(x) ((x)<0?(-(x)):(x))
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define PI acos(-1.0)
#define lowbit(x) ((x)&(-(x)))
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
#define inf 100000000
//For C++
#include <cctype>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <bitset>
#include <list>
#include <iostream>
using namespace std;
const double eps=1e-10;
int dblcmp(typec d) {
if (fabs(d)<eps)
return 0;
return (d>0)?1:-1;
}
LL modo;
const int maxn=3;
class Mat
{
public:
LL Matn,Matm;
typec a[maxn][maxn];
Mat()
{
Matn=0;
Matm=0;
memset(a,0LL,sizeof(a));
}
void output();
void init();
void initI();
Mat mul(const Mat &a);
Mat power(const Mat&a,LL k);
};
void Mat::output()
{
for (int i=0;i<Matn;++i)
{
for (int j=0;j<Matm;++j)
{
if (j!=0) printf(" ");
printf("%I64d",a[i][j]);
}
printf("\n");
}
}
void Mat::init()
{
Matn=0;
Matm=0;
memset(a,0LL,sizeof(a));
}
Mat Mat::mul(const Mat &A)
{
Mat c;
c.init();
c.Matn=Matn;
c.Matm=A.Matm;
for (int i=0;i<Matn;++i)
for (int j=0;j<A.Matm;++j)
{
for (int k=0;k<Matm;++k)
{
c.a[i][j]=(c.a[i][j]+(a[i][k]*A.a[k][j])%modo)%modo;
}
}
return c;
}
void Mat::initI()
{
memset(a,0LL,sizeof(a));
for (int i=0;i<Matn;++i) a[i][i]=1LL;
}
Mat Mat::power(const Mat& a,LL k)
{
Mat c=a,b;
b.init();
b.Matn=a.Matn;b.Matm=a.Matm;
b.initI();
while (k)
{
if (k & (1LL))
b=b.mul(c);
c=c.mul(c);
k>>=1LL;
}
return b;
}
Mat A ,B;
LL g(LL x){
//Mat A;
if (x == 0LL) return 0LL;
if (x == 1LL) return 1LL;
//A.init();
//A.Matn = 1LL , A.Matm = 2LL;
//A.a[0][0]=1LL,A.a[0][1]=0LL;
//Mat B;
B.init();
B.Matn = 2LL , B.Matm = 2LL;
B.a[0][0]= 3LL, B.a[1][0]=1LL;
B.a[0][1] = 1LL; B.a[1][1]=0LL;
B = B.power(B , x - 1LL);
//A = A.mul(B);
return B.a[0][0];
}
LL n;
void solve(){
//printf("%I64d\n",g(42837));
modo = 183120LL;
LL res = g(n);
//res = (res * inv(res , modo))% modo;
//cout<<res<<endl;
modo = 222222224LL;
res = g(res);
//cout<<res<<endl;
//res = (res * inv(res , modo))% modo;
modo =(1000000000LL + 7LL);
res = g(res);
//res = (res * inv(res-1LL , modo))% modo;
//printf("%I64d\n",g(g(g(n))));
printf("%I64d\n",res);
}
/*0
0
set<LL> has;
void solve(){
has.clear();
LL i;
for (i = 1 ; ; ++i){
LL res = g(i);
if(has.find(res) != has.end()){
cout<<i<<endl;
return;
}
has.insert(res);
}
}*/
int main(){
//solve();
while (~scanf("%I64d",&n)) solve();
}