ZOJ 3640 Help Me Escape

Background

 

    If thou doest well, shalt thou not be accepted? and if thou doest not well, sin lieth at the door. And unto thee shall be his desire, and thou shalt rule over him.
    And Cain talked with Abel his brother: and it came to pass, when they were in the field, that Cain rose up against Abel his brother, and slew him.
    And the LORD said unto Cain, Where is Abel thy brother? And he said, I know not: Am I my brother's keeper?
    And he said, What hast thou done? the voice of thy brother's blood crieth unto me from the ground.
    And now art thou cursed from the earth, which hath opened her mouth to receive thy brother's blood from thy hand;
    When thou tillest the ground, it shall not henceforth yield unto thee her strength; a fugitive and a vagabond shalt thou be in the earth.

 

—— Bible Chapter 4

 

 

Now Cain is unexpectedly trapped in a cave with N paths. Due to LORD's punishment, all the paths are zigzag and dangerous. The difficulty of the ith path is ci.

Then we define f as the fighting capacity of Cain. Every day, Cain will be sent to one of the N paths randomly.

Suppose Cain is in front of the ith path. He can successfully take ti days to escape from the cave as long as his fighting capacity f is larger than ci. Otherwise, he has to keep trying day after day. However, if Cain failed to escape, his fighting capacity would increase ci as the result of actual combat. (A kindly reminder: Cain will never died.)

As for ti, we can easily draw a conclusion that ti is closely related to ci. Let's use the following function to describe their relationship:

ti=floor((1+sqrt(5))*0.5*ci*ci);

After D days, Cain finally escapes from the cave. Please output the expectation of D.

Input

The input consists of several cases. In each case, two positive integers N and f (n ≤ 100, f ≤ 10000) are given in the first line. The second line includes N positive integers ci (ci ≤ 10000, 1 ≤ i ≤ N)

Output

For each case, you should output the expectation(3 digits after the decimal point).

Sample Input

3 1
1 2 3

Sample Output

6.889

思路:

dp[i]表示力量为i时的期望值。

递归计算即可。


#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<math.h>
using namespace std;

const int MAXN = 200010;

double dp[MAXN];
int c[110];
int n;

double solve(int f)
{
    if (dp[f] > 0)
	{
		return dp[f];
	}

    dp[f] = 0;
    for (int i = 0; i < n; i++)
    {
        if (f > c[i])
        {
            double temp = (1.0 + sqrt(5)) / 2 * c[i] * c[i];
            int t = (int)temp;
            dp[f] += (double)t/n;
        }
        else
        {
            dp[f] += (1 + solve(f + c[i])) / n;
        }
    }

    return dp[f];
}

int main()
{
    int f;
    while (scanf("%d%d", &n, &f) != EOF)
    {
        for ( int i = 0; i < n; i++)
		{
			scanf("%d",&c[i]);
		}
        memset(dp, 0, sizeof(dp));
        printf("%.3lf\n", solve(f));
    }

    return 0;
}

 

内容概要:本文详细介绍了如何使用Matlab对地表水源热泵系统进行建模,并采用粒子群算法来优化每小时的制冷量和制热量。首先,文章解释了地表水源热泵的工作原理及其重要性,随后展示了如何设定基本参数并构建热泵机组的基础模型。接着,文章深入探讨了粒子群算法的具体实现步骤,包括参数设置、粒子初始化、适应度评估以及粒子位置和速度的更新规则。为了确保优化的有效性和实用性,文中还讨论了如何处理实际应用中的约束条件,如设备的最大能力和制冷/制热模式之间的互斥关系。此外,作者分享了一些实用技巧,例如引入混合优化方法以加快收敛速度,以及在目标函数中加入额外的惩罚项来减少不必要的模式切换。最终,通过对优化结果的可视化分析,验证了所提出的方法能够显著降低能耗并提高系统的运行效率。 适用人群:从事暖通空调系统设计、优化及相关领域的工程师和技术人员,尤其是那些希望深入了解地表水源热泵系统特性和优化方法的专业人士。 使用场景及目标:适用于需要对地表水源热泵系统进行精确建模和优化的情景,旨在找到既满足建筑负荷需求又能使机组运行在最高效率点的制冷/制热量组合。主要目标是在保证室内舒适度的前提下,最大限度地节约能源并延长设备使用寿命。 其他说明:文中提供的Matlab代码片段可以帮助读者更好地理解和复现整个建模和优化过程。同时,作者强调了在实际工程项目中灵活调整相关参数的重要性,以便获得更好的优化效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值