推导坐标旋转公式

1围绕原点的旋转

在《Flash actionScript 3.0 动画教程》一书中有一个旋转公式:

x1=cos(angle)*x-sin(angle)*y;

y1=cos(angle)*y+sin(angle)*x;

其中x,y表示物体相对于旋转点旋转angle的角度之前的坐标,x1,y1表示物体旋转angle后相对于旋转点的坐标

 

从数学上来说,此公式可以用来计算某个点绕另外一点旋转一定角度后的坐标,例如:A(x,y)绕B(a,b)旋转β度后的位置为C(c,d),则x,y,a,b,β,c,d有如下关系式:



1。设A点旋转前的角度为δ,则旋转(逆时针)到C点后角度为δ+β

2。求A,B两点的距离:dist1=|AB|=y/sin(δ)=x/cos(δ)

3。求C,B两点的距离:dist2=|CB|=d/sin(δ+β)=c/cos(δ+β)

4。显然dist1=dist2,设dist1=r所以:

  r=x/cos(δ)=y/sin(δ)=d/sin(δ+β)=c/cos(δ+β)

5。由三角函数两角和差公式知:

  sin(δ+β)=sin(δ)cos(β)+cos(δ)sin(β)

  cos(δ+β)=cos(δ)cos(β)-sin(δ)sin(β)

  所以得出:

  c=r*cos(δ+β)=r*cos(δ)cos(β)-r*sin(δ)sin(β)=xcos(β)-ysin(β)

  d=r*sin(δ+β)=r*sin(δ)cos(β)+r*cos(δ)sin(β)=ycos(β)+xsin(β)

即旋转后的坐标c,d只与旋转前的坐标x,y及旋转的角度β有关:


 

从图中可以很容易理解出A点旋转后的C点总是在圆周上运动,圆周的半径为|AB|,利用这点就可以使物体绕圆周运动,即旋转物体。

以上转自http://www.cnblogs.com/ywxgod/archive/2010/08/06/1793609.html


2.座标系的旋转

在原坐标系xoy中,  绕原点沿逆时针方向旋转theta度, 变成座标系 sot。

设有某点p,在原坐标系中的坐标为 (x, y), 旋转后的新坐标为(s, t)。


oa = y sin(theta)   (2.1)

as = x cos(theta)   (2.2)

综合(2.1),(2.2) 2式

s =  os =oa + as = x cos(theta) + y sin(theta)

t =  ot =ay – ab = y cos(theta) – x sin(theta)

用行列式表达如下


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值