Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
class Solution {
public:
int numTrees(int n) {
vector<int> temp(n);
return numTrees(n, temp);
}
int numTrees(int n, vector<int>& vec)
{
if (n <= 1) return 1;
if (vec[n-1] > 0) return vec[n-1];
int count = 0;
for (int i = 1; i <= n; i++) {
count += numTrees(i-1, vec) * numTrees(n-i, vec);
}
vec[n-1] = count;
return count;
}
};