Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
AC代码:
//
// main.cpp
// 1003
//
// Created by showlo on 2018/4/10.
// Copyright © 2018年 showlo. All rights reserved.
//
#include <stdio.h>
int a[100100];
int main() {
int N,n;
int start,end,max,num;
int temp;
num=1;
scanf("%d",&N);
while (N--) {
scanf("%d",&n);
for (int i=0; i<n; i++) {
scanf("%d",&a[i]);
}
max=a[0];
start=0;
end=0;
temp=0;
for (int i=1; i<n; i++) { //动态规划
if (a[i-1]>=0) {
a[i]=a[i]+a[i-1];
}
else
temp=i;
if (a[i]>max) {
max=a[i];
end=i;
start=temp;
}
}
printf("Case %d:\n",num);
printf("%d %d %d\n",max,start+1,end+1);
if (N) {
printf("\n");
}
num++;
}
return 0;
}