树上差分 用到了树链剖分的方法求 lca。
这题数据有点弱呀,
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 20020, M = 2 * 200020;
int n, m;
int h[N], e[M], ne[M], idx;
int dfs[N], cha[N], d[N], sz[N], fa[N], son[N], bl[N], cnt;
int ans;
void add(int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
void dfs1(int x) {
sz[x] = 1;
d[x] = d[fa[x]] + 1;
for(int i = h[x]; ~i; i = ne[i]) {
int j = e[i];
if(j != fa[x]){
fa[j] = x;
dfs1(j);
sz[x] += sz[j];
if(sz[son[x]] < sz[j]) son[x] = j;
}
}
}
void dfs2(int x, int belong) {
dfs[x] = ++cnt;
bl[x] = belong;
if(son[x]) dfs2(son[x], belong);
for(int i = h[x]; ~i; i = ne[i]) {
int j = e[i];
if(j != son[x] && j != fa[x]) {
dfs2(j, j);
}
}
}
int lca(int l, int r) {
while(bl[l] != bl[r]) {
if(d[bl[l]] > d[bl[r]]) swap(l, r);
r = fa[bl[r]];
}
return d[l] > d[r] ? r : l;
}
void dfs_ans(int x) {
for(int i = h[x];~i;i = ne[i]) {
int j = e[i];
if(j != fa[x]){
dfs_ans(j);
cha[x] += cha[j];
}
}
if(x != 1)//边权写法
ans = min(ans, cha[x]);
}
int main(){
int _, l, r;
scanf("%d",&_);
for(int cas = 1; cas <= _;cas ++) {
idx = 0;
cnt = 0;
ans = 0x7f7f7f7f;
memset(h, -1, sizeof h);
memset(son, 0, sizeof son);
memset(cha ,0, sizeof cha);
scanf("%d%d",&n,&m);
for(int i = 0;i < n-1;i ++) {
scanf("%d%d",&l, &r) ;
add(l, r), add(r, l);
}
dfs1(1);
dfs2(1, 1);
for(int i = 0;i < m - n + 1;i ++) {
scanf("%d%d",&l,&r);
int f = lca(l, r);
// cha[l] ++, cha[r] ++, cha[f] --, cha[fa[f]] --;//点权写法
cha[l] ++, cha[r] ++, cha[f] -= 2;//边权写法
}
dfs_ans(1);
printf("Case #%d: %d\n", cas, ans + 1);
}
return 0;
}
/*
1
4 5
1 2
2 3
3 4
1 3
1 4
*/
624





