2019 icpc ecfinal H.King 思维 模拟 随机数

本文介绍了一道思维题的编程解决方案,通过使用C++实现,并针对随机数生成进行了优化以提高程序的正确率。该方案利用了快速幂运算来解决特定问题,并通过多次尝试寻找最优解。

一个思维题,切入点是n/2

写代码后交疯狂wa18,然后发现rand函数的上限是32767,太小了,换了一个随机数就过了。

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 200020;

int n, mod;

std::mt19937 rnd(time(0));
int a[N];

ll qmi(ll a, int k) {
    ll res = 1;
    while(k) {
        if(k & 1) res = (res * a) % mod;
        a = (a * a) % mod;
        k >>= 1;
    }
    return res;
}

int main() {
    int t;
    scanf("%d", &t);
    while(t --) {
        scanf("%d%d", &n,&mod);
        for(int i = 1;i <= n;i ++) scanf("%d", &a[i]);

        int ans = 0;
        for(int Case = 1;Case <= 500;Case ++) {
            ll x = rnd() % n + 1;

            for(ll l = 1;l <=2 && l + x <= n;l ++) {
                int num = 2;
                ll q = (a[l+x] * qmi(a[x], mod-2)) % mod;
                ll last = (a[l+x] * q) % mod;
                for(int i = l + x + 1;i <= n;i ++) {
                    if(a[i] == last) {
                        num ++;
                        last = (last * q) % mod;
                    }
                }

                q = qmi(q, mod-2);
                last = (a[x] * q) % mod;

                for(int i = x-1;i >= 1;i --) {
                    if(a[i] == last) {
                        num ++;
                        last = (last * q) % mod;
                    }
                }
                ans = max(ans, num);
            }
        }
        if(ans >= (n+1)/2) printf("%d\n", ans);
        else printf("%d\n", -1);
    }
    return 0;
}
<think>好的,我现在需要帮助用户查找ICPC南京区域赛题目I(Counter)的解法或讨论。首先,我需要确认用户提到的具体是哪一年的比赛。根据用户提供的引用,引用了2020、2021、2022年的南京区域赛内容,但问题I(Counter)可能出现在不同年份的比赛中。 接下来,我需要检查提供的引用内容,看看是否有提到Problem I或Counter相关的信息。引用[1]提到用户请求关于序列的问题,可能与Counter题目的内容相关。引用[2]提到关于处理ai=0的情况,这可能与问题中的某些条件有关。引用[3]是2020年的题解,其中包含n的范围,可能与题目中的参数相关。引用[4]和[5]分别涉及其他问题,可能不直接相关。 假设用户指的是2022年的题目,因为引用[1]提到了2022南京补题记录中的问题I。不过,引用中并没有直接给出问题I的解法。可能需要进一步分析题目可能的解法方向。 根据常见的竞赛题目类型,Counter可能涉及计数问题,可能与组合数学、动态规划或数学推导相关。例如,可能需要找到满足特定条件的排列数或序列数。结合引用[2]中提到的处理ai=0的情况,可能题目中存在某种递推关系或需要排除某些特殊情况。 此外,引用[3]中提到的n的范围到1e6,可能意味着需要线性或O(n)的算法,而不是暴力解法。这可能涉及数学公式或预处理技巧。例如,快速幂、组合数预处理或模运算优化。 可能的解决步骤包括: 1. 确定题目的具体要求,例如计算满足某种条件的计数器值。 2. 分析输入条件和约束,确定算法复杂度要求。 3. 推导数学公式,可能需要递推关系或组合数学的知识。 4. 处理特殊情况,如ai=0的情况,如引用[2]所述。 5. 实现高效的代码,可能利用动态规划或数学优化。 由于用户提供的引用中没有详细的题解,可能需要根据常见的竞赛题目模式进行推测。例如,如果题目涉及计数满足某种排列条件的序列,可能需要使用排列组合或容斥原理。或者,如果涉及动态规划,可能需要状态转移方程的推导。 在生成回答时,需要结合可能的解题方向,并引用相关的引用内容来支持解释。例如,引用[2]提到的处理ai=0的情况可能涉及到排除无效情况或计算贡献,引用[3]中的n范围提示需要高效算法。 最后,生成相关问题,帮助用户进一步理解题目可能的解法和优化方向。</think>### ICPC南京区域赛题目I(Counter)解法分析 根据现有信息推测,题目I(Counter)可能与**序列计数**或**数学推导**相关。结合引用[2]中提到的"ai=0"处理方式,以及竞赛题常见模式,解法可能涉及以下关键点: 1. **问题建模** - 需要计算满足特定条件的序列数量,例如:相邻元素关系、模数约束等 - 可能涉及排列组合数学,例如构造满足$a_i \equiv c \mod m$条件的序列 2. **关键观察** - 当$a_i=0$时,可通过数学推导直接计算其对答案的贡献[^2] - 可能存在递归关系或快速幂优化,尤其当$n \leq 10^6$时需要线性算法[^3] 3. **算法设计** ```python # 示例伪代码结构(假设为递推关系) MOD = 10**9+7 n = int(input()) dp = [0]*(n+1) dp[0] = 1 for i in range(1, n+1): dp[i] = (dp[i-1] * k) % MOD # k为状态转移参数 print(dp[n]) ``` 4. **复杂度优化** - 预处理阶乘/逆元加速组合数计算 - 矩阵快速幂优化递推关系 - 利用模运算性质减少计算量[^4]
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值