【干货】开发AI量化策略所遇到的坑

本文从思想和实操两层面分享开发AI量化选股策略的常见问题。思想上,训练集和测试集不能重合,金融时序数据按时间划分,训练集数据不能少,特征要有可比性,标注函数和策略逻辑要一致,因子并非越多越好;实操上,建议用可视化模式,注意测试集日期和因子周期匹配,成交率限制设为0。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AI只是工具,想要驾驭AI还得自身有点功底,不然反而会被工具所害,甚至从信仰AI变为抵制AI。本文简单介绍开发AI量化选股策略中所遇到的各种坑,希望大家有所收获,少走弯路。

本文主要从思想和实操两个层面分享下我在开发AI量化选股策略中所遇到的各种坑,也希望各位小伙伴能够进行补充。

策略思想逻辑层面

  1. 训练集和测试集不能有所重合
    机器学习的基本思路就是在训练集上发现pattern,训练出模型,然后对样本外的预测集数据进行预测。这好比老师平时布置的作业就是训练集,学生们通过平时的作业学习到知识,然后期末老师通过期末试卷来检验学生的学习掌握情况,如果期末试卷和平时作业一模一样,那么学生测试效果就会很好,因为之前他们就见过答案,这样就做不到对学生平时学习能力、知识掌握能力的测试,因此测试集不能和训练集一样。对于AI量化策略同样如此,如果拿模型预测训练集,效果一定很好,毕竟训练模型的时候模型已经“见过”了实际值。

  2. 金融时序数据采取以时间点划分训练集和测试集,而不是随机划分
    金融数据是标准的时间序列数据,时间序列数据最主要的特征就是具有自相关性,因此使用机器学习、深度学习对金融数据进行建模不能完全照搬传统的机器学习模式。传统机器学习模式对训练集和测试集的划分是采取随机划分,样本之间没有时间先后顺序,完全是独立的样本,因此可以把数据打乱,随机抽取80%的数据作为训练集,剩下的20%数据作为测试集。但是金融市场不同的时间段市场状况是不一样的,时间是划分训练集和测试集最好的直尺。可以参考:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值