【codeforces711B】Chris and Magic Square

本文介绍了一个编程问题,即如何在给定的n×n魔法方格中找到合适的正整数填入空格,使得每一行、每一列以及两条对角线上的数字之和相等,形成一个魔法方格。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Chris and Magic Square
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

ZS the Coder and Chris the Baboon arrived at the entrance of Udayland. There is a n × n magic grid on the entrance which is filled with integers. Chris noticed that exactly one of the cells in the grid is empty, and to enter Udayland, they need to fill a positive integer into the empty cell.

Chris tried filling in random numbers but it didn't work. ZS the Coder realizes that they need to fill in a positive integer such that the numbers in the grid form a magic square. This means that he has to fill in a positive integer so that the sum of the numbers in each row of the grid (), each column of the grid (), and the two long diagonals of the grid (the main diagonal —  and the secondary diagonal — ) are equal.

Chris doesn't know what number to fill in. Can you help Chris find the correct positive integer to fill in or determine that it is impossible?

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 500) — the number of rows and columns of the magic grid.

n lines follow, each of them contains n integers. The j-th number in the i-th of them denotes ai, j (1 ≤ ai, j ≤ 109 or ai, j = 0), the number in the i-th row and j-th column of the magic grid. If the corresponding cell is empty, ai, j will be equal to 0. Otherwise, ai, j is positive.

It is guaranteed that there is exactly one pair of integers i, j (1 ≤ i, j ≤ n) such that ai, j = 0.

Output

Output a single integer, the positive integer x (1 ≤ x ≤ 1018) that should be filled in the empty cell so that the whole grid becomes a magic square. If such positive integer x does not exist, output  - 1 instead.

If there are multiple solutions, you may print any of them.

Examples
input
3
4 0 2
3 5 7
8 1 6
output
9
input
4
1 1 1 1
1 1 0 1
1 1 1 1
1 1 1 1
output
1
input
4
1 1 1 1
1 1 0 1
1 1 2 1
1 1 1 1
output
-1
Note

In the first sample case, we can fill in 9 into the empty cell to make the resulting grid a magic square. Indeed,

The sum of numbers in each row is:

4 + 9 + 2 = 3 + 5 + 7 = 8 + 1 + 6 = 15.

The sum of numbers in each column is:

4 + 3 + 8 = 9 + 5 + 1 = 2 + 7 + 6 = 15.

The sum of numbers in the two diagonals is:

4 + 5 + 6 = 2 + 5 + 8 = 15.

In the third sample case, it is impossible to fill a number in the empty square such that the resulting grid is a magic square.

思维题,先求出每行每列以及两条对角线的最大值MAX,记录等于0是在第几行第几列,然后把行列值及对角线值加上,最大值MAX与等于0的行的差值,如果存在不等于MAX的情况就说明不存在,反之输出差值k。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#define LL long long
#include<algorithm>
using namespace std;
const int N = 505;
LL r[N],l[N],d[3];
LL a[N][N];
int main(){
	int n;
	while(scanf("%d",&n)!=EOF){
		int x,y;
		LL MAX=0;
		memset(r,0,sizeof(r));
		memset(l,0,sizeof(l));
		d[0]=0;
		d[1]=0;
		for(int i=0;i<n;i++){
			for(int j=0;j<n;j++){
				scanf("%lld",&a[i][j]);
				if(a[i][j]==0)
					x=i,y=j;
				r[i]+=a[i][j];
				MAX=max(MAX,r[i]);
				l[j]+=a[i][j];
				MAX=max(MAX,l[j]);
				if(i==j)
					d[0]+=a[i][j],MAX=max(MAX,d[0]);
				if(i+j==n-1)
					d[1]+=a[i][j],MAX=max(MAX,d[1]);
			}
		}
		if(n==1){
			printf("1\n");
			continue;	
		}
		LL k=MAX-r[x];
		r[x]=MAX;
		l[y]+=k;
		if(x==y)
			d[0]+=k;
		if(x+y==n-1)
			d[1]+=k;
		int t;
		for(t=0;t<n;t++){
			if(r[t]!=MAX||l[t]!=MAX)
				break;
		} 
		if(k<=0||t<n||d[0]!=MAX||d[1]!=MAX)
			printf("-1\n");
		else 
			printf("%lld\n",k);
	}
	return 0;
} 


### 关于 Codeforces 1853B 的题解与实现 尽管当前未提供关于 Codeforces 1853B 的具体引用内容,但可以根据常见的竞赛编程问题模式以及相关算法知识来推测可能的解决方案。 #### 题目概述 通常情况下,Codeforces B 类题目涉及基础数据结构或简单算法的应用。假设该题目要求处理某种数组操作或者字符串匹配,则可以采用如下方法解决: #### 解决方案分析 如果题目涉及到数组查询或修改操作,一种常见的方式是利用前缀和技巧优化时间复杂度[^3]。例如,对于区间求和问题,可以通过预计算前缀和数组快速得到任意区间的总和。 以下是基于上述假设的一个 Python 实现示例: ```python def solve_1853B(): import sys input = sys.stdin.read data = input().split() n, q = map(int, data[0].split()) # 数组长度和询问次数 array = list(map(int, data[1].split())) # 初始数组 prefix_sum = [0] * (n + 1) for i in range(1, n + 1): prefix_sum[i] = prefix_sum[i - 1] + array[i - 1] results = [] for _ in range(q): l, r = map(int, data[2:].pop(0).split()) current_sum = prefix_sum[r] - prefix_sum[l - 1] results.append(current_sum % (10**9 + 7)) return results print(*solve_1853B(), sep='\n') ``` 此代码片段展示了如何通过构建 `prefix_sum` 来高效响应多次区间求和请求,并对结果取模 \(10^9+7\) 输出[^4]。 #### 进一步扩展思考 当面对更复杂的约束条件时,动态规划或其他高级技术可能会被引入到解答之中。然而,在没有确切了解本题细节之前,以上仅作为通用策略分享给用户参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值