Machine Learning--Classifying with probability theory: Naive Bayes

本文介绍了贝叶斯决策理论的基础概念,包括如何基于条件概率选择最有可能的类别,并通过朴素贝叶斯假设简化实际应用中的计算过程。此外,还讨论了在计算过程中如何避免下溢问题。

Classifying with Bayesian decision

Choose the class with the higher probility, which is the Bayesian decision theory in a nutshell.

Classifying with Conditional Probability

p(ci|[x,j])=p([x,y]|ci)p(ci)p([x,y])

Naive Bayes Assumption

  1. Independence among all the features.
  2. Every feature is equally important.

some Code

Underflow

We can solve the underflow problem by using the the logarithm of probability in our calculations.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值