[Machine Learning]---ROC(Receiver Operating Characteristic) Curve

本文介绍了真阳性率(TPR)与假阳性率(FPR)的概念,并详细阐述了如何利用这些指标绘制ROC曲线。此外,还探讨了如何根据ROC曲线选择合适的阈值来平衡模型的预测性能。

1. Some Basic Concepts

  • True Positive Rate:
    TPR=TPTP+FN
  • False Positive Rate
    FPR=FPFP+TN

2. ROC Curve

ROC use the TPR as the y axis and FPR as the x axis, so we hope that y is as large as possible and x is as small as possible.
In a picture we hope that the ROC cure in the high and left.
So, how to choose the threshold θ .
1. if h(x)>θ , we classify the x is Positive as 1.
2. If h(x)<\theat, we classify the x as Negative as 0.
Let’s plot the picture.
这里写图片描述

3. Reference

http://blog.youkuaiyun.com/abcjennifer/article/details/7359370

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值