[Machine Learning]--Improving classification with the AdaBoost meta-algorithm

本文介绍了提升算法的基础概念,包括其作为机器学习集合元算法的角色,主要用于降低偏差和方差。文章解释了元算法的概念,并推荐了一篇综合文章帮助理解提升、自助法及装袋等容易混淆的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Let’ s see some basic Concepts!
Boosting Algorithm_wiki: is a machine learning ensemble(means all) meta-algorithm for primarily reducing bias, and also variance in supervised learning, and a family of machine learning algorithms which convert weak learners to strong ones.
meta-algorithm: is just an informal, qualitative term, meaning an algorithm that exists to manipulate some other algorithms, which can can take the form of using different algorithms, using the same algorithm with different settings, or assigning different parts of the dataset to different classifiers.
An Awesome Article to Summarize These Confusing Concepts( bootstrap, boosting, bagging )
Click Me

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值