% BFGS
function [x, output] = bfgs(fun, dfun, x0, varargin)
% Step 1: initialization
epsi = 1.0e-6;
k = 0;
funcN = 0;
rho = 0.01; l = 0.15; u = 0.85;
x = x0;
f = feval(fun, x, varargin{:});
funcN = funcN + 1;
n = length(x0);
H = eye(n);
% Step 2: check termination condition
g = feval(dfun, x, varargin{:});
while norm(g) > epsi & k <= 100
itercon = true;
d = -H*g;
% Step 3: line search
alpha_0 = 1.0;
gd = g'*d;
[alpha, funcNk, exitflag] = ...
lines(fun, rho, l, u, alpha_0, f, gd, x, d, varargin{:});
funcN = funcN + funcNk;
if exitflag == -1
itercon = false;
restart = true;
H = eye(n);
gold = g;
end
% Step 4: compute new point
if itercon
s = alpha * d;
x = x + s;
f = feval(fun, x, varargin{:});
funcN = funcN + 1;
gold = g;
g = feval(dfun, x, varargin{:});
% Stept 5: update H
y = g - gold;
hy = H*y; sy = s'*y; yhy = y'*hy;
if sy < 0.2*yhy
theta = 0.8*yhy/(yhy-sy);
s = theta*s + (1.0-theta)*hy;
sy = 0.2*yhy;
end
v = sqrt(yhy)*(s/sy-hy/yhy);
H = H + s*s'/sy-hy*hy'/yhy+v*v';
end
k = k + 1;
end
% Step 6: output
output.fval = f;
output.iteration = k;
output.funcount = funcN;
output.gnorm = norm(g);
end
测试
% f1.m
function f = f1(x)
% objective function
f = (x(2)-x(1)^2)^2+(1-x(1))^2;
end
% df1.m
function g = df1(x)
% grads function
g = [4.0*(x(1)^3-x(1)*x(2))+2*x(1)-2;2.0*(x(2)-x(1)^2)];
end
% Command
>> x0=[-1.9;2];
>> [x, output]=bfgs('f1', 'df1', x0)
结果
x =
1.0000
1.0000
output =
fval: 6.3098e-017
iteration: 12
funcount: 28
gnorm: 3.8353e-008
这是一个MATLAB代码示例,展示了如何使用BFGS(Broyden-Fletcher-Goldfarb-Shanno)算法进行最优化。代码中包含了主函数bfgs,以及用于计算目标函数f1和梯度df1的辅助函数。通过调用bfgs('f1', 'df1', x0),可以求解初始点x0=[-1.9;2]的目标函数最小值,最终得到优化后的x值和相关输出信息。"
107257721,8814872,ActiveMQ性能瓶颈与网络延迟影响分析,"['分布式', 'Java', '数据库', '消息队列', '性能调优']
1075





