文章目录
一、学习任务
1.按照 https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/5.2-using-convnets-with-small-datasets.ipynb,
利用TensorFlow和Keras,自己搭建卷积神经网络完成狗猫数据集的分类实验;将关键步骤用汉语注释出来。解释什么是overfit(过拟合)?什么是数据增强?如果单独只做数据增强,精确率提高了多少?然后再添加的dropout层,是什么实际效果?
2. 用Vgg19网络模型完成狗猫分类,写出实验结果;
二、学习内容
1.环境配置
1.安装Anaconda
2.配置Pytorch
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision
2.构建数据集
数据集下载地址:https://www.kaggle.com/lizhensheng/-2000

3.猫狗实例
1.导入库
# 导入库
import torch.nn.functional as F
import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
2.设置超参数
设置超参数
BATCH_SIZE = 20
EPOCHS = 10
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
3.图像处理与图像增强
# 数据预处理
transform = transforms.Compose([
transforms.Resize(100),
transforms.RandomVerticalFlip(),
transforms.RandomCrop(50),
transforms.RandomResizedCrop(150),
transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
4.读取数据和导入数据
# 读取数据
dataset_train = datasets.ImageFolder('data/train', transform)
print(dataset_train.imgs)
# 对应文件夹的label
print(dataset_train.class_to_idx)
dataset_test = datasets.ImageFolder('data/val', transform)
# 对应文件夹的label
print(dataset_test.class_to_idx)
# 导入数据
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True)
5.定义网络模型
# 定义网络
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 3)
self.max_pool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(32, 64, 3)
self.max_pool2 = nn.MaxPool2d(2)
self.conv3 = nn.Conv2d(

最低0.47元/天 解锁文章
868

被折叠的 条评论
为什么被折叠?



