OpenCV学习笔记 - 使用 OpenCV 检测运动的最简单方法

本文介绍了使用OpenCV进行运动检测的基础方法——帧差分。通过计算灰度帧差异,设置阈值,寻找轮廓,以及执行非极大值抑制,实现了运动物体的初步检测。虽然这种方法存在一些局限,如对相机静止的依赖和误检问题,但对于初学者来说是一个很好的起点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、运动检测

        运动检测是检测视频序列中移动对象的过程。在计算机视觉中,它是检测视频帧中像素级变化的过程。我们可以用它来发现现实世界中的新对象,甚至执行与类无关的对象检测,这在地理空间分析、客户分析、监视、自治和其他相关领域非常有用。

        如何检测视频中的运动?这里介绍了一些可用于检测运动的基本方法,并展示了如何使用 Python从头开始​​编写每种方法。

        主要技术如下

        第 1 部分 — 帧差分

        第 2 部分 — 光流

        第 3 部分 — 背景扣除

        在这篇文章中,我们首先使用最简单的方法来实现运动检测,它只涉及基本的 opencv 函数。该方法依赖于一种称为“帧差分”的方法,即从前一视频帧中减去当前视频帧并记录差异,这些差异即对应于运动。

        下面是基本步骤,之后我们从头开始用 Python 进行编码。

  &

### 关于OpenCV中霍夫圆检测的学习教程 #### 霍夫圆检测简介 霍夫圆检测是一种用于识别图像中圆形物体的技术。该方法通过参数空间累加投票的方式找到可能存在的圆心位置及其半径大小[^1]。 #### 实现过程概述 为了实现霍夫圆检测,通常遵循以下几个主要步骤: - **转换为灰度图**:对于彩色输入图片来说,第一步是要将其转化为单通道的灰度形式以便后续处理。 - **降噪预处理**:采用诸如高斯滤波的方法去除不必要的细节干扰,使得边缘更加清晰明显[^3]。 - **提取轮廓线**:利用像Canny这样的算子来进行边界捕捉操作,从而获得目标对象的大致外形特征。 - **执行Hough变换**:调用`cv2.HoughCircles()`函数完成实际的圆周定位工作;此阶段涉及设定多个重要参数以控制精度和效率之间的平衡关系。 - **可视化结果**:最后一步是在原图中标记出所发现的所有符合条件的圆形区域供进一步分析或展示用途。 下面是具体的Python代码实例来说明如何运用上述流程进行简单的霍夫圆检测任务: ```python import cv2 import numpy as np # 加载测试样本并调整尺寸方便显示 img = cv2.imread('coins.jpg') output = img.copy() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 应用轻微模糊效果降低随机噪声影响 blurred = cv2.GaussianBlur(gray, (9, 9), 2) # 执行边缘探测算法得到初步形状线索 edges = cv2.Canny(blurred, threshold1=50, threshold2=150) # 进行霍夫变换查找潜在的圆形结构 circles = cv2.HoughCircles(edges, method=cv2.HOUGH_GRADIENT_ALT, dp=1.5, minDist=80, param1=400, param2=0.85, minRadius=20, maxRadius=100) if circles is not None: detected_circles = np.uint16(np.around(circles)) for circle in detected_circles[0]: center_x, center_y, radius = circle # 绘制外接矩形框包围每一个被确认下来的圈状物 cv2.circle(output, (center_x, center_y), radius, color=(0, 255, 0), thickness=2) # 同时也标记中心点坐标作为辅助参考信息 cv2.circle(output, (center_x, center_y), 2, color=(0, 0, 255), thickness=-1) # 展示最终成果给用户查看 cv2.imshow("Detected Circles", output) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这段脚本展示了完整的从读取文件直至渲染图形输出整个链条上的各个环节,并且包含了必要的配置选项让读者能够轻松复制运行起来观察具体行为表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值