机器学习笔记 - 使用 ResNet-50 和余弦相似度的基于图像的推荐系统

本文介绍了一个利用ResNet-50深度学习模型进行特征提取,结合余弦相似度实现图像检索的推荐系统。系统通过预训练的ResNet-50提取图像特征,然后应用全局最大池化,最后使用余弦相似度找到最相似的图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简述

        这里的代码主要是基于图像的推荐系统,该系统利用 ResNet-50 深度学习模型作为特征提取器,并采用余弦相似度来查找给定输入图像的最相似嵌入。

        该系统旨在根据所提供图像的视觉内容为用户提供个性化推荐。

二、所需环境

Python 3.x
tensorflow ==2.5.0
numpy==1.21.0
streamlit
pillow==8.3.1
pandas

三、特征提取

        首先加载ResNet50的基于imagenet预训练模型。

        冻结模型的权重,使其在训练过程中不会更新。

        创建一个新模型,在ResNet50模型之后添加一个GlobalMaxPooling2D层。

        使用预先训练的模型从图像中提取特征。

import tensorflow as tf
import numpy as np
from numpy.linal
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值