机器学习笔记 - PyTorch Image Models图像模型概览 (timm)

本文介绍了PyTorch Image Models (timm)库,它是一个包含先进图像模型、优化器和调度器的集合。文章详细说明了如何在自定义训练脚本中使用timm,特别是如何加载和使用预训练模型,并提供了模型集合的参考链接。通过Hugging Face Hub,可以方便地加载和执行模型推理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简述

        PyTorch Image Models (timm)是一个用于最先进的图像分类的库,包含图像模型、优化器、调度器、增强等的集合;是比较热门的论文及代码库。

        虽然越来越多的低代码和无代码解决方案可以轻松开始将深度学习应用于计算机视觉问题,但我们经常与希望寻求定制解决方案的客户合作针对他们的具体问题;利用最新、最伟大的创新来超越这些服务提供的性能水平。由于新的架构和训练技术被引入到这个快速发展的领域,无论您是初学者还是专家,都可能很难跟上最新的实践,并且在接触新的技术时很难知道从哪里开始。视觉任务,旨在重现与学术基准中呈现的结果相似的结果。

        无论是从头开始训练,还是将现有模型微调到新任务,以及希望利用预先存在的组件来加快我的工作流程,timm 都是用起来让人觉得比较舒服的 PyTorch 计算机视觉库之一。然而,虽然 timm 包含用于重现ImageNet训练结果的参考训练和验证脚本,并且拥有涵盖官方文档和timmdocs 项目中核心组件的文档,但由于该库提供的功能数量众多,因此很难知道在哪里可以找到在自定义用例中应用这些时开始。

        这篇文章的目的是从实践者的角度探索 timm,重点介绍如何在自定义训练脚本中使用 timm 中包含的一些功能和组件。重点不是探索这些概念如何或为何起作用,或者它们如何在 timm 中实现;为此,将在适当的情况下提供原始论文的链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值