第二卷 第十章 GoogLeNet
在本章中,我们将研究GoogLeNet 架构。 首先,与 AlexNet 和 VGGNet 相比,模型架构很小(权重本身为约28MB)。作者能够通过移除完全连接的层并使用全局平均池化来实现网络架构大小的显着下降(同时仍然增加整个网络的深度)。CNN 中的大部分权重都可以在密集的 FC 层中找到,如果这些层可以被移除,内存节省是巨大的。
具体来说, Inception 模块是一个适合卷积神经网络的构建块,使其能够学习具有多种过滤器尺寸的 CONV 层,从而将该模块转变为多级特征提取器。
Inception 等微架构启发了其他重要的变体,包括 ResNet中的 Residual 模块和 SqueezeNet 中的 Fire 模块。我们将在本章后面讨论 Inception 模块(及其变体)。 并了解它的原理,我们将实现一个较小版本的 GoogLeNet,称为“MiniGoogLeNet”——我们将在 CIFAR-10 数据集上训练这个架构,并获得比之前章节任何其他架构更高的准确率。
之后,我们将继续进行更困难的Tiny ImageNet挑战。这项挑战是为参加斯坦福大学 cs231n 卷积神经网络视觉识别课程