Python视觉深度学习系列教程 第二卷 第3章 理解rank-1&rank-5精度

本文详细介绍了Rank-1和Rank-5精度在深度学习特别是图像分类中的作用,通过实例展示了如何在Flowers-17和CALTECH-101数据集上计算这两个指标,强调在处理大规模、细粒度分类问题时,Rank-5精度的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        第二卷 第三章 理解rank-1&rank-5精度

        在讨论高级深度学习主题(例如迁移学习)之前,让我们先退后一步,讨论1级、5级和N级准确率的概念。在阅读深度学习文献时,尤其是在计算机视觉和图像分类领域,您可能会遇到排名准确性的概念。例如,几乎所有介绍在ImageNet数据集上评估的机器学习方法的论文都根据1级和5级准确度展示了他们的结果(我们将找出为什么1级和5级准确度都在后面报告)在这一章当中)。

        1级和5级准确率到底是什么?它们与传统的准确度(即精度)有何不同?在本章中,我们将讨论排序准确率,学习如何实现它,然后将其应用于在Flowers-17和CALTECH-101数据集上训练的机器学习模型。

        1、排名准确率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值