在我们看来,计算机就是一台严丝合缝、精密运转的机器,严格按照程序员下达的指令工作。虽然产品上线之后经常碰到迷之问题,但我们通常会检讨程序设计得不够完美,而不会认为这是理所当然。因为我们相信只要程序设计严谨,将各种意外情况考虑在内,就会消除这种不确定问题。
然而到了机器学习,特别是深度学习,很多结果都是以概率的形式提供的。就拿图片分类来说,通常模型预测出图片属于每个类别的概率,而不是直接给出一个确定的结果。这就如同天气预报员预报明天的天气:晴天的概率多少多少,下雨的概率多少多少。估计如果这样预报天气,很多人会抓狂。问题是,天气预报说明天是晴天,明天就一定是晴天吗?这其实仍然是一个概率问题。虽然我们掌握了足够的气象资料,天气预报也越来越准确,但是我们依然无法保证每次都是准确的。
既然在深度学习中分类问题是各类别的概率,我们很容易选择一种策略:某个类别的概率最高,我们就认为预测结果属于哪种类别。比如下面这张蛙的图片:
使用CIFAR-10数据集训练出的模型进行推断,各个类别的概率如下:
其中,Frog类别的概率最大,我们就认为这张图片所属的类别为Frog。
计算模型准确度的方法也非常简单:
- 步骤#1:计算数据集中每个输入图像的类别标签的概率。
- 步骤#2:确定真实标签是否等于具有最大概率的预测类别标签。
- 步骤#3:计算步骤#2为真的次数,然后除以总的测试图片数量。
这种度量也称之为rank-1准确度,这也是一种非常直观的度量方式。然而,最近几乎所有在ImageNet数据集上评估的机器