HDU 1160 FatMouse's Speed(DP)

本文介绍了一种解决最长增重减速子序列问题的算法实现,通过先按速度降序排列,然后寻找最长重量增序子序列的方法,解决了给定老鼠集合中找到最多数量的老鼠,使得它们的重量依次增加而速度依次减少的问题。

题目链接:http://hdu.hustoj.com/showproblem.php?pid=1160

题目大意:输入到文件结束,每行一个老鼠的重量和速度,要求选最多只老鼠,重量依次增加,速度依次减小

Problem Description
FatMouse believes that the fatter a mouse is, the faster it runs. To disprove this, you want to take the data on a collection of mice and put as large a subset of this data as possible into a sequence so that the weights are increasing, but the speeds are decreasing.
 

Input
Input contains data for a bunch of mice, one mouse per line, terminated by end of file.

The data for a particular mouse will consist of a pair of integers: the first representing its size in grams and the second representing its speed in centimeters per second. Both integers are between 1 and 10000. The data in each test case will contain information for at most 1000 mice.

Two mice may have the same weight, the same speed, or even the same weight and speed. 
 

Output
Your program should output a sequence of lines of data; the first line should contain a number n; the remaining n lines should each contain a single positive integer (each one representing a mouse). If these n integers are m[1], m[2],..., m[n] then it must be the case that 

W[m[1]] < W[m[2]] < ... < W[m[n]]

and 

S[m[1]] > S[m[2]] > ... > S[m[n]]

In order for the answer to be correct, n should be as large as possible.
All inequalities are strict: weights must be strictly increasing, and speeds must be strictly decreasing. There may be many correct outputs for a given input, your program only needs to find one. 
 

Sample Input

 
6008 1300 6000 2100 500 2000 1000 4000 1100 3000 6000 2000 8000 1400 6000 1200 2000 1900
 

Sample Output

 
4 4 5 9 7
 

Source


思路:按照速度y从大到小排个序之后,就转化成求x的最长上升子序列了,记录一下idx,最后从后往前找递归输出

代码:

#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<queue>
#include<stack>
#include<map>

using namespace std;

#define FOU(i,x,y) for(int i=x;i<=y;i++)
#define FOD(i,x,y) for(int i=x;i>=y;i--)
#define MEM(a,val) memset(a,val,sizeof(a))
#define PI acos(-1.0)

const double EXP = 1e-9;
typedef long long ll;
typedef unsigned long long ull;
const int INF = 0x3f3f3f3f;
const ll MINF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9+7;
const int N = 1e6+5;

struct node
{
    int x;
    int y;
    int idx;
}a[1005];

int ans[1005];
int ansy[1005];
int dp[1005];
int vis[1005];

bool cmp(node A,node B)
{
    if(A.y==B.y)
        return A.x<B.x;
    return A.y>B.y;
}

void output(int x,int now)
{
    if(x==0)
        return ;
    for(int i=now;i>=1;i--)
    {
        if(dp[i]==x)
        {
            output(x-1,i-1);
            printf("%d\n",a[i].idx);
            break;
        }
    }
}

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    std::ios::sync_with_stdio(false);
    int cnt=1;
    while(~scanf("%d%d",&a[cnt].x,&a[cnt].y))
    {
        a[cnt].idx=cnt;
        cnt++;
    }
    cnt--;
    //printf("cnt=%d\n",cnt);
    sort(a+1,a+1+cnt,cmp);
    for(int i=1;i<=cnt;i++)
        dp[i]=1;
    int ans=1;
    for(int i=2;i<=cnt;i++)
    {
        for(int j=1;j<i;j++)
        {
            if(a[i].x>a[j].x&&a[i].y<a[j].y)
                dp[i]=max(dp[i],dp[j]+1);
        }
        ans=max(ans,dp[i]);
    }
    printf("%d\n",ans);
    int x=ans;
    output(ans,cnt);
    return 0;
}

【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值